跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 03:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范宏竹
研究生(外文):Hung-Chu Fan
論文名稱:設計發展機器手臂輔助系統於中風病人的上肢治療訓練
論文名稱(外文):Robotic-Aided System Design for Upper Extremity Therapeutic Training in Patients with Stroke
指導教授:鍾高基鍾高基引用關係
指導教授(外文):Kao-Chi Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:89
中文關鍵詞:機器人上肢復健中風機器手臂
外文關鍵詞:robotstrokeCVArehabilitation
相關次數:
  • 被引用被引用:5
  • 點閱點閱:674
  • 評分評分:
  • 下載下載:117
  • 收藏至我的研究室書目清單書目收藏:5
腦血管疾病亦稱中風,造成病人死亡或是言語、行動、日常生活功能性障礙,為國內最常見而且很嚴重的疾病。由於腦具有可塑性,故腦損傷後,腦神經細胞會產生新連結,使中風後病患具有感覺動作功能恢復的過程,中風後之病患雖具有主動恢復歷程,仍須積極配合適當之動作治療方式才能有效改善感覺動作功能。有研究顯示,大量的持續練習可增強學習的效果,也因此強化了動作學習所著重的適應能力。有多位學者應用機器人(機器手臂)在中風病人的上肢復健上,利用機器人可以大量重複一致的動作,且能量化所得到的評估結果,皆有正面的效果。本研究目的為發展回饋式機器手臂輔助系統(Robotic-aided System)以提供單側中風病人於腦部中樞神經損傷後之上肢動作復健訓練。

機器手臂輔助訓練系統採用機電系統設計架構,其包含機器手臂本體系統,訊號傳輸介面系統,人機操作介面系統。機器手臂本體系統採用連桿設計,與伺服馬達、伺服器、電磁離合器、編碼器、六軸力感測器所組成。訊號傳輸介面系統主體為ADLINK 8164運動控制卡、ADLINK8133 PWM與編碼計數卡與ADLINK 9112卡。人機操作介面系統採用工業電腦以達穩定的操作環境,作業系統則採用Window98,GUI操作介面以Borland C++ Builder 5.0所撰寫。系統校正包含電磁離合器扭力的輸出、伺服馬達轉速、六軸力/力矩感測器之感測值。

機器手臂輔助訓練系統在硬體方面已經完成,主要元件經校正測試後,電磁離合器輸出電壓與扭力的回歸曲線方程式為y=1.6842x+1.7753,在馬達轉速校正測試中,輸入與輸出的誤差很小,顯示出馬達具有較高度的穩定性,六軸力/力矩感測器在校正測試中,經統計分析後其誤差值很小,顯示出六軸力/力矩感測器具有較高度的穩定性。

本研究之機器手臂輔助訓練系統可提供中風病人在上肢復健療效上的研究。當平面動作控制系統完成後,進而將機器手臂的平面軌跡動作擴充到空間的軌跡動作。配合臨床醫療人員應用本機器手臂輔助訓練系統與肌電量測系統對中風病人進行系統性的療程試驗與評估。
Stroke(cerebral vascular accidents, CVA)is an important clinical problem nowadays in Taiwan. Neurological impairments results from CVA are highly associated with functional disabilities of upper and lower extremities. Further rehabilitation training and therapies are usually employed to restore the functional abilities. Recently, Constraint-Induced Movement therapy, which focuses on massive and active learning on the affected side, has been developed for upper extremity rehabilitation training. Thus, both brain plasticity induced by training and learning-induced neuroplasticity could be considered for upper extremity training.
This research is aimed to design a robot-aided manipulator training system to provide movement assessments and therapies for post-strokes. The system is designed to control and measure movement performance of upper extremities. Servo motors are used to drive the five-bar linkage to perform trajectories. A six-axes force/torque sensor is attached at the end-effector of manipulator to measure end-point forces/torque generated by upper extremity. To provide systematic and varied training process, a GUI controlling panel has been designated. A LCD monitor is used to provide visual feedback, extremity movement. By integrating these approached, the system is used to measure end-point coordinates and force for further kinematic and kinetic analysis.
This robot-aided system can provide research in the effect of rehabilitation in upper extremity of post-stroke patients.
中文摘要…………………………………………………………… I
Abstract……………………………………………………………… III
誌謝…………………………………………………………………. IV
目錄………………………………………………………………… V
表目錄……………………………………………………………… VIII
圖目錄…………………………………………………………… X
1.1 腦血管疾病…………………………………………………… 1
1.1.1 流行病學…………………………………………………1
1.1.2 腦中風成因……………………………………………… 1
1.2 背景與文獻回顧……………………………………………… 2
1.2.1 腦損傷中風後之功能回復歷程……………………… 2
1.2.2 腦損傷中風後之功能回復機轉……………………… 6
1.2.3 約束-誘導運動治療於上肢功能之訓練……………… 7
1.2.4 動作技巧學習與動作適應…………………………… 10
1.2.5 機器人於中風病人上肢復健之應用………………… 13
1.3 研究動機與目的……………………………………………… 19
1.4 研究假說與重要性…………………………………………… 19
第二章材料與方法
2.1 機器手臂輔助訓練系統設計架構…………………………… 20
2.2 機器手臂本體系統…………………………………………… 22
2.2.1 機器手臂系統之設計…………………………………… 22
2.2.2 機器手臂運動學與動力學推導………………………… 29
2.2.3 機器手臂系統之驅動控制……………………………… 41
2.3 訊號傳輸介面系統…………………………………………… 44
2.4 人機操作介面系統…………………………………………… 45
2.5 肌電訊號量測儀……………………………………………… 48
2.6 電子量角器…………………………………………………… 48
2.7 系統校正……………………………………………………… 49
2.7.1 磁粉式電磁離合器校正……………………………… 49
2.7.2 馬達轉速校正………………………………………… 51
2.7.3 六軸力/力矩感測器校正……………………………… 52
第三章結果與討論
3.1 機器手臂輔助訓練系統……………………………………… 55
3.2 機器手臂軌跡運動學與動力學相關公式之驗證…………… 58
3.3 機器手臂輔助系統校正結果………………………………… 61
第四章結論…………………………………………………… 77
參考文獻………………………………………………………… 78
附錄一座標值與角度驗證結果……………………………… 81
附錄二A 值驗證結果……………………………… 84
1. 王瑞遙等編譯,半身不遂病人的運動治療,合記圖書出版社,民86。
2. Olsen TS. “ Arm and leg paresis as outcome predictors in stroke rehabilitation. ” Stroke. vol.21, no.2, pp.247-51, 1990 Feb.
3. Taub E. Crago JE. Burgio LD. Groomes TE. Cook EW 3rd. DeLuca SC. Miller NE. “An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping.” Journal of the Experimental Analysis of Behavior. vol.61, no.2, pp.281-93, 1994 Mar.
4. Liepert J. Miltner WH. Bauder H.Sommer M. Dettmers C. Taub E. Weiller C. “Motor cortex plasticity during constraint-induced movement therapy in stroke patients.” Neuroscience Letters. vol.250, no.1, pp.5-8, 1998 Jun .
5. Kopp B., Kunkel A. Muhlnickel W. Villringer K., Taub E. Flor H. “ Plasticity in the motor system related to therapy-induced improvement of movement after stroke.” NeuroReport. vol.10, no.4, pp.807-10, 1999 Mar.
6. Mussa-Ivaldi F. A. Patton J.L. ”Robot can teach people how to move their arm.” Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Conference on , vol.1, pp.300-305, 2000 April.
7. Shadmehr R. Mussa-Ivaldi F. A. “Adaptive representation of dynamics during learning of a motor task.” Journal of Neuroscience, vol.14, pp.3208-3224, 1994.
8. Kleim JA. Barbay S. Nudo RJ. “Functional reorganization of the rat motor cortex following motor skill learning.” Journal of Neurophysiology. vol.80, no.6, pp.3321-5, 1998 Dec.
9. Plautz EJ. Milliken GW. Nudo RJ. “Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning.” Neurobiology of Learning & Memory. vol.74, no.1, pp.27-55, 2000 Jul.
10. Krebs HI. Hogon N. Aisen ML. Volpe BT. “ Robot-Aided Neurorehabilitation ”, IEEE Transactions on Rehabilitation Engineering, vol. 6, no.1, pp. 75-87, 1998 Mar.
11. J. Alastair Cozens, “ Robotic Assistance of an Active Upper Limb Exercise in Neurologically Impaired Patients”, IEEE Trans. on Rehabilitation Engineering, vol. 7, no. 2, pp.254-256, 1999 June.
12. Reinkensmeyer DJ. Dewald JP. Rymer WZ. “Guidance-based quantification of arm impairment following brain injury: a pilot study.” IEEE Transactions on Rehabilitation Engineering. vol.7, no.1, pp.1-11, 1999 Mar.
13. Lum PS. Burgar CG. Shor PC. Majmundar M. Van der Loos M. “ Robot-Assisted Movement Training Compared With Conventional Therapy Techniques for the Rehabilitation of Upper-Limb Motor Function After Stroke ”, Arch Phys Med Rehabil, vol 83, pp. 952-959, 2002 July.
14. Hesse S. Schulte-Tigges G. Konrad M. Bardeleben A. Werner C. “Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects.” Archives of Physical Medicine & Rehabilitation. vol.84, no.6, pp915-20, 2003 June.
15. 陳秋旺, “ 肘關節復健用機器人之研究 ”, 國立成功大學機械工程系碩士論文, 2000.
16. 林棟煌, “肘關節神經復健用機器人之改良及臨床測試”, 國立成功大學機械工程系碩士論文, 2001.
17. 董憲奇, “肘關節神經復健用機器人之改進與臨床研究”, 國立成功大學機械工程系碩士論文, 2001.
18. Asada H. Youcef-Toumi K. “ Analysis and Design of a Direct-Drive Arm With a Five-Bar-Link Parallel Drive Mechanism. ” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 106, pp. 225-230, 1984 Sep.
19. Burdet E. Osu R. Franklin DW. Yoshioka T. Milner TE. Kawato M. A method for measuring endpoint stiffness during multi-joint arm movements. Journal of Biomechanics, vol. 33, no.12, pp.1705-9, 2000 Dec.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top