跳到主要內容

臺灣博碩士論文加值系統

(44.192.15.251) 您好!臺灣時間:2024/03/05 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉家賓
研究生(外文):Chia-Pin Liu
論文名稱:幽門桿菌附著分子hopZ和sabA基因之分析
論文名稱(外文):The hopZ and sabA Genes of Adhesion Molecule in Helicobacter pylori
指導教授:許博翔許博翔引用關係吳俊忠
指導教授(外文):Bor-Shyang SheuJiunn-Jong Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:131
中文關鍵詞:幽門桿菌附著蛋白路易斯血型抗原
外文關鍵詞:Helicobacter pyloriadhesinLewis antigenhopZBabAsabA
相關次數:
  • 被引用被引用:3
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
幽門桿菌為一隻革蘭氏陰性桿菌,屬於微需氧且具有螺旋狀外型,能夠群居在人類胃壁黏膜處。一些與附著相關的基因被認為與該細菌的致病能力有關。近來發現一個被命名為 sialic acid-binding adhesin (SabA) 的附著分子會和細胞表面的 sialyl di-Lewis x 抗原 (sdiLex) 結合,並且此結合作用發生在幽門桿菌先以另一被研究較多的附著分子 BabA 與Lewis b 抗原結合之後。目前 SabA 蛋白在台灣菌株的情形,以及當宿主較少或不表現 Lewis b 抗原時,SabA 的角色以及與臨床病徵的關聯均不清楚。本實驗以148株臨床菌株進行 PCR 偵測 sabA 基因的存在,結合兩對引子的結果得到80.4%的陽性率 (119/148)。119株陽性菌株中有95株的 PCR 產物能成功定序,再依有無明顯之 CT 雙核苷酸重複序列可歸為2種類型,其中37株不含 CT 重複序列而歸為第二型者,有36株依照可完全轉譯和可能具有 signal sequence 推測其會表現蛋白。再加上18株具有 CT 重複序列且表現 SabA 的第一型菌株,推測在台灣菌株中 SabA 蛋白的盛行率為43.5% (54/124)。流行病學調查中發現,當 SabA 蛋白與宿主 Lewis x 抗原均表現時,宿主 Lewis b 抗原的表現較弱;若兩者共同表現則與宿主胃菌落量的增加有關。先前研究指出 hopZ 變異株在體外實驗中附著到胃細胞株的能力有顯著下降,並且對 C57BL/6 小鼠胃的群居量也較少,但目前並不清楚 HopZ 蛋白在臨床病人胃部感染時是否也扮演著附著的角色。和部分 sabA 基因相同,hopZ 基因的表現由位於該基因5'區域之不同數目的 CT重複透過 slipped-strand mispairing 機制所調控,故在臨床菌株的 hopZ 基因中可發現有不同的表現狀態。本實驗共收集148株臨床菌株進行 PCR 以偵測 hopZ 基因,結果陽性菌株佔83.1% (123/148)。123株陽性菌株中有92株的 PCR 產物成功被定序,其中33株依 CT 重複數目配合可完整轉譯之觀察預測為可以表現 HopZ 蛋白,另有兩株CT 重複數目原屬 “off” 者的 DNA 序列亦可被完整轉譯,因此推測 HopZ 蛋白在台灣菌株的盛行率為29.9% (35/117)。然而感染 HopZ表現菌株與宿主病理變化除 Lewis x 抗原表現量略高外並無其他明顯關聯。本實驗亦用基因置換方式成功建立3株 hopZ 變異株,並觀察其附著能力的改變。結果發現野生株與變異株附著到 AGS 細胞的程度並無不同,即使在BabA 的功能被抑制後兩者的附著程度亦無差異。根據以上結果,本研究推論 SabA 在宿主缺乏或少量表現Lewis b 抗原時,能幫助細菌的附著進而群居在宿主胃中;但 HopZ 可能在幽門桿菌附著到胃上皮細胞的過程並非扮演重要角色。
Helicobacter pylori is a Gram-negative, microaerophilic spiral bacterium which colonizes the mucosa of human stomach. Genes involved in adhesion is thought to be essential for virulence. One adhesin, named sialic acid-binding adhesin (SabA), was recently found that it binds to sialyl di-Lewis x antigen (sdiLex) on host cell surface. This binding occurs after H. pylori using the well-demonstrated BabA adhesin for binding to Lewis b antigen. The prevalence of SabA protein in Taiwanese strains, and the association of SabA with the clinical outcomes when host Lewis b expression is weak or absent are not clear. A total of 148 domestic strains were enrolled for detecting sabA gene by PCR. Combining the results of two primer pairs, the probable genopositive rate of sabA gene was 80.4% (119/148). The PCR products of sabA from 95 of 119 genopositve strains were successfully sequenced. These sabA sequences were classified into 2 types according to the existence of obvious CT dinucleotide repeat tract in the signal sequences of them. Among 37 of type II strains without CT repeats, 36 were proposed to be able to express SabA protein by the evidences of the in-frame translation and the existence of putative signal sequence. Including the 18 SabA-expressing type I strains with CT repeat tract, the prevalence rate of putative SabA protein in Taiwanese strains was 43.5% (54/124). Reduced expression of host Lewis b expression was found when SabA and host Lewis x antigen were simultaneously expressed. Furthermore, simultaneous expression of SabA and host Lewis x was associated with enhanced bacterial density in host stomach. Previous reports described that the isogenic hopZ mutant showed significantly reduced binding to gastric cell line in vitro and lower the colonization density to stomach of C57BL/6 mice. However, the actual role of HopZ protein for colonization is not clear in clinical patients. The phenotypic variation of the hopZ gene, as same as a portion of sabA genes, is regulated by different CT repeats within 5’ region of the gene through slipped-strand mispairing mechanism. Therefore, “on” or “off” of hopZ gene expression can be disclosed in the different clinical isolates. A total of 148 H. pylori isolates were also detected for hopZ gene by PCR. The genopositive rate of hopZ gene was 83.1% (123/148). The PCR products from 92 of 123 genopositve strains were successfully sequenced for hopZ sequence. Among these 92 strains, 33 strains were disclosed with HopZ protein expression predicted by the number of repeats matching the in-frame translation. DNA sequences of two strains with the repeat number originally for “off” status could also be translated completely. Therefore, the probable prevalence rate of HopZ protein in Taiwanese strains was 29.9% (35/117). However, there was not any correlation between the infection of HopZ-expressing strains and the pathological changes except Lewis x expression was slightly enhanced in host stomach. Three isogenic hopZ mutants were successfully constructed by gene replacement and assayed for their adhesion ability. There was no difference between wild-type strains and mutants in adherence to AGS cell line even if the function of BabA was blocked. Based on the results above, SabA may help bacterial adherence for colonization in host when host Lewis b expression is weak or absent, but HopZ may not have an important role in adhesion of H. pylori to gastric epithelium.
中文摘要……………………………………………… i
英文摘要……………………………………………… iii
誌謝…………………………………………………… vi
目錄…………………………………………………… vii
表目錄…………………………………………………… x
圖目錄………………………………………………… xii
符號與縮寫……………………………………………xiii
緒論…………………………………………………… 1
材料與方法…………………………………………… 20
一、細菌、細胞株與質體………………………… 20
二、儀器與藥品…………………………………… 20
三、細菌之鑑定、培養與保存…………………… 20
四、細胞的培養和保存…………………………… 21
五、宿主之病理及組織學診斷…………………… 22
六、細菌DNA之抽取………………………………… 24
七、聚合酶連鎖反應 (PCR)……………………… 25
八、核酸定序 (DNA sequencing) 分析………… 26
九、統計及電腦分析……………………………… 27
十、hopZ 變異株之構築…………………………… 27
十一、南方墨漬雜交法 (Southern blotting
hybridization)…………………………… 30
十二、附著能力試驗 (Adhesion assay)………… 32
結果…………………………………………………… 35
部分一: sabA 基因………………………………… 35
一、sabA 基因在台灣幽門桿菌臨床菌株之流行
率…………………………………………… 35
二、sabA 基因5'端序列之變異………………… 36
三、Type II sabA 序列之分析………………… 37
四、SabA 蛋白在臨床菌株之表現情形………… 39
五、sabA 基因之表現與病患胃組織病變之關聯 41
六、SabA 分子與缺乏或 Lewis b 表現弱之病
患胃組織病變之關聯……………………… 42
部分二: hopZ 基因………………………………… 44
一、hopZ 基因在台灣幽門桿菌臨床菌株之流行
率…………………………………………… 44
二、hopZ 基因CT雙核苷酸重複序列之分佈與
HopZ蛋白表現情形………………………… 44
三、hopZ 基因之表現與宿主胃組織病理變化
之關聯性…………………………………… 46
四、hopZ 基因變異株之構築…………………… 47
五、使用南方墨漬法確認 hopZ 基因變異株的建
立…………………………………………… 49
六、hopZ 基因之變異對附著能力的影響……… 50
討論…………………………………………………… 52
參考文獻……………………………………………… 59
圖表…………………………………………………… 73
附錄…………………………………………………… 116
自述…………………………………………………… 131
Aihara, M., D. Tsuchimoto, H. Takizawa, A. Azuma, H. Wakebe, Y. Ohmoto, K. Imagawa, M. Kikuchi, N. Mukaida, and K. Matsushima. 1997. Mechanisms involved in Helicobacter pylori-induced interleukin-8 production by a gastric cancer cell line, MKN45. Infect. Immun. 65: 3218-3224.

Alm, R. A., L. S. Ling, D. T. Moir, B. L. King, E. D. Brown, P. C. Doig, D. R. Smith, B. Noonan, B. C. Guild, B. L. deJonge, G. Carmel, P. J. Tummino, A. Caruso, M. Uria-Nickelsen, D. M. Mills, C. Ives, R. Gibson, D. Merberg, S. D. Mills, Q. Jiang, D. E. Taylor, G. F. Vovis, and T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397: 176-180.

Andrutis, K. A., J. G. Fox, D. B. Schauer, R. P. Marini, X. Li, L. Yan, C. Josenhans, and S. Suerbaum. 1997. Infection of the ferret stomach by isogenic flagellar mutant strains of Helicobacter mustelae. Infect. Immun. 65: 1962-1966.

Appelmelk, B. J., M. A. Monteiro, S. L. Martin, A. P. Moran, and C. M. Vandenbroucke-Grauls. 2000. Why Helicobacter pylori has Lewis antigens. Trends Microbiol. 8: 565-570.

Asahi, M., T. Azuma, S. Ito, Y. Ito, H. Suto, Y. Nagai, M. Tsubokawa, Y. Tohyama, S. Maeda, M. Omata, T. Suzuki, and C. Sasakawa. 2000. Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J. Exp. Med. 191: 593-602.

Atherton, J. C., P. Cao, R. M. Peek, Jr., M. K. Tummuru, M. J. Blaser, and T. L. Cover. 1995. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270: 17771-17777.

Atherton, J. C., R. M. Peek, Jr., K. T. Tham, T. L. Cover, and M. J. Blaser. 1997. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology 112: 92-99.

Bizzozero, G. 1893. Über die schlauchformigen Drüsen des Magendarkanals und die Beziehungen ihres Epithels zu dem ächenepithel der Schleimhaut. Arch. Mikr. Anat. 42: 82.

Blaser, M. J. 1993. Helicobacter pylori: microbiology of a 'slow' bacterial infection. Trends Microbiol. 1: 255-260.

Blaser, M. J. and J. Parsonnet. 1994. Parasitism by the "slow" bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia. J. Clin. Invest. 94: 4-8.

Blaser, M. J., G. I. Perez-Perez, H. Kleanthous, T. L. Cover, R. M. Peek, P. H. Chyou, G. N. Stemmermann, and A. Nomura. 1995. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer. Res. 55: 2111-2115.

Borén, T., S. Normark, and P. Falk. 1994. Helicobacter pylori: molecular basis for host recognition and bacterial adherence. Trends Microbiol. 2: 221-228.

Cellini, L., L. Marzio, G. Ferrero, A. Del Vino, E. Di Campli, L. Grossi, S. Toracchio, and L. Artese. 2001. Transmission of Helicobacter pyori in an animal model. Dig. Dis. Sci. 46: 62-68.

Censini, S., C. Lange, Z. Xiang, J. E. Crabtree, P. Ghiara, M. Borodovsky, R. Rappuoli, and A. Covacci. 1996. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. U. S. A. 93: 14648-14653.

Chmiela, M., A. Ljungh, W. Rudnicka, and T. Wadstrom. 1996. Phagocytosis of Helicobacter pylori bacteria differing in the heparan sulfate binding by human polymorphonuclear leukocytes. Zentralbl. Bakteriol. 283: 346-350.

Clausen, H. and S. Hakomori. 1989. ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang 56: 1-20.

Clyne, M. and B. Drumm. 1997. Absence of effect of Lewis A and Lewis B expression on adherence of Helicobacter pylori to human gastric cells. Gastroenterology 113: 72-80.

Corthesy-Theulaz, I. E., S. Hopkins, D. Bachmann, P. F. Saldinger, N. Porta, R. Haas, Y. Zheng-Xin, T. Meyer, H. Bouzourene, A. L. Blum, and J. P. Kraehenbuhl. 1998. Mice are protected from Helicobacter pylori infection by nasal immunization with attenuated Salmonella typhimurium phoPc expressing urease A and B subunits. Infect. Immun. 66: 581-586.

Covacci, A., S. Censini, M. Bugnoli, R. Petracca, D. Burroni, G. Macchia, A. Massone, E. Papini, Z. Xiang, N. Figura, et al. 1993. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl. Acad. Sci. U. S. A. 90: 5791-5795.

Covacci, A., S. Falkow, D. E. Berg, and R. Rappuoli. 1997. Did the inheritance of a pathogenicity island modify the virulence of Helicobacter pylori? Trends Microbiol. 5: 205-208.

Cover, T. L., S. A. Halter, and M. J. Blaser. 1992. Characterization of HeLa cell vacuoles induced by Helicobacter pylori broth culture supernatant. Hum. Pathol. 23: 1004-1010.

Cover, T. L., M. K. Tummuru, P. Cao, S. A. Thompson, and M. J. Blaser. 1994. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J. Biol. Chem. 269: 10566-10573.

Crabtree, J. E., J. D. Taylor, J. I. Wyatt, R. V. Heatley, T. M. Shallcross, D. S. Tompkins, and B. J. Rathbone. 1991. Mucosal IgA recognition of Helicobacter pylori 120 kDa protein, peptic ulceration, and gastric pathology. Lancet 338: 332-335.

de Bernard, M., E. Papini, V. de Filippis, E. Gottardi, J. Telford, R. Manetti, A. Fontana, R. Rappuoli, and C. Montecucco. 1995. Low pH activates the vacuolating toxin of Helicobacter pylori, which becomes acid and pepsin resistant. J. Biol. Chem. 270: 23937-23940.

Dixon, M. F., R. M. Genta, J. H. Yardley, and P. Correa. 1996a. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am. J. Surg. Pathol. 20: 1161-1181.

Dixon, M. 1996b. Pathological consequences of Helicobacter pylori infection. Scand. J. Gastroenterol. Suppl. 215: 21.

Dunn, B. E., N. B. Vakil, B. G. Schneider, M. M. Miller, J. B. Zitzer, T. Peutz, and S. H. Phadnis. 1997. Localization of Helicobacter pylori urease and heat shock protein in human gastric biopsies. Infect. Immun. 65: 1181-1188.

Eaton, K. A., D. R. Morgan, and S. Krakowka. 1989. Campylobacter pylori virulence factors in gnotobiotic piglets. Infect. Immun. 57: 1119-1125.

Eaton, K. A., C. L. Brooks, D. R. Morgan, and S. Krakowka. 1991. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect. Immun. 59: 2470-2475.

Evans, D. J. Jr., D. G. Evans, T. Takemura, H. Nakano, H. C. Lampert, D. Y. Graham, D. N. Granger, and P. R. Kvietys. 1995. Characterization of a Helicobacter pylori neutrophil-activating protein. Infect. Immun. 63: 2213-2220.

Evans, D. J. Jr. and D. G. Evans. 2000. Helicobacter pylori adhesins: review and perspectives. Helicobacter 5: 183-195.

Farinati, F., D. Nitti, F. Cardin, F. Di Mario, F. Costa, C. Rossi, A. Marchett, M. Lise, and R. Naccarato. 1988. CA 19-9 determination in gastric juice: role in identifying gastric cancer and high risk patients. Eur. J. Cancer Clin. Oncol. 24: 923-927.

Finne, J., M. E. Breimer, G. C. Hansson, K. A. Karlsson, H. Leffler, J. F. Vliegenthart, and H. van Halbeek. 1989. Novel polyfucosylated N-linked glycopeptides with blood group A, H, X, and Y determinants from human small intestinal epithelial cells. J. Biol. Chem. 264: 5720-5735.

Fischer, W., J. Puls, R. Buhrdorf, B. Gebert, S. Odenbreit, and R. Haas. 2001. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol. Microbiol. 42: 1337-1348.

Gandolfi, L. 1997. High seroprevalence of IgG against Helicobacter pylori among endoscopists in Taiwan. Gastrointest. Endosc. 46: 292-294.

Geis, G., H. Leying, S. Suerbaum, U. Mai, and W. Opferkuch. 1989. Ultrastructure and chemical analysis of Campylobacter pylori flagella. J. Clin. Microbiol. 27: 436-441.

Geis, G., S. Suerbaum, B. Forsthoff, H. Leying, and W. Opferkuch. 1993. Ultrastructure and biochemical studies of the flagellar sheath of Helicobacter pylori. J. Med. Microbiol. 38: 371-377.

Gerhard, M., N. Lehn, N. Neumayer, T. Boren, R. Rad, W. Schepp, S. Miehlke, M. Classen, and C. Prinz. 1999. Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc. Natl. Acad. Sci. U. S. A. 96: 12778-12783.

Goodman, K. and J. P. Correa. 1995. The transmission of Helicobacter pylori. A critical review of the evidence. Int. J. Epidemiol. 24: 875-887.

Guruge, J. L., P. G. Falk, R. G. Lorenz, M. Dans, H. P. Wirth, M. J. Blaser, D. E. Berg, and J. I. Gordon. 1998. Epithelial attachment alters the outcome of Helicobacter pylori infection. Proc. Natl. Acad. Sci. U. S. A. 95: 3925-3930.

Hata, Y., T. Kita, and M. Murakami. 1999. Bovine milk inhibits both adhesion of Helicobacter pylori to sulfatide and Helicobacter pylori-induced vacuolation of vero cells. Dig. Dis. Sci. 44: 1696-1702.

Higashi, H., R. Tsutsumi, A. Fujita, S. Yamazaki, M. Asaka, T. Azuma, and M. Hatakeyama. 2002. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc. Natl. Acad. Sci. U. S. A. 99: 14428-14433.

Hirmo, S., S. Kelm, M. Iwersen, K. Hotta, Y. Goso, K. Ishihara, T. Suguri, M. Morita, T. Wadstrom, and R. Schauer. 1998. Inhibition of Helicobacter pylori sialic acid-specific haemagglutination by human gastrointestinal mucins and milk glycoproteins. FEMS Immunol. Med. Microbiol. 20: 275-281.

Huesca, M., S. Borgia, P. Hoffman, and C. A. Lingwood. 1996. Acidic pH changes receptor binding specificity of Helicobacter pylori: a binary adhesion model in which surface heat shock (stress) proteins mediate sulfatide recognition in gastric colonization. Infect. Immun. 64: 2643-2648.

Icatlo, F. C., H. Goshima, N. Kimura, and Y. Kodama. 2000. Acid-dependent adherence of Helicobacter pylori urease to diverse polysaccharides. Gastroenterology 119: 358-367.

Ilver, D., A. Arnqvist, J. Ogren, I. M. Frick, D. Kersulyte, E. T. Incecik, D. E. Berg, A. Covacci, L. Engstrand, and T. Borén. 1998. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279: 373-377.

Ish-Horowicz, D. and J. F. Burke. 1981. Rapid and efficient cosmid cloning. Nucleic Acids Res. 9: 2989-2998.

Jabri, E., M. B. Carr, R. P. Hausinger, and P. A. Karplus. 1995. The crystal structure of urease from Klebsiella aerogenes. Science 268: 998-1004.

Jones, A. C., R. P. Logan, S. Foynes, A. Cockayne, B. W. Wren, and C. W. Penn. 1997. A flagellar sheath protein of Helicobacter pylori is identical to HpaA, a putative N-acetylneuraminyllactose-binding hemagglutinin, but is not an adhesin for AGS cells. J. Bacteriol. 179: 5643-5647.

Kamiya, S., H. Yamaguchi, T. Osaki, and H. Taguchi. 1998. A virulence factor of Helicobacter pylori: role of heat shock protein in mucosal inflammation after H. pylori infection. J. Clin. Gastroenterol. 27: S35-39.

Kobayashi, K., J. Sakamoto, T. Kito, Y. Yamamura, T. Koshikawa, M. Fujita, T. Watanabe, and H. Nakazato. 1993. Lewis blood group-related antigen expression in normal gastric epithelium, intestinal metaplasia, gastric adenoma, and gastric carcinoma. Am. J. Gastroenterol. 88: 919-924.

Krienitz, W. 1906. Über das Auftreten von Spirochaeten verschiendener Form im Mageninhalt bei Carcinoma ventriculi. Dtsch. Med. Wochenschr. 32: 872.

Kurose, I., D. N. Granger, D. J. Evans, Jr., D. G. Evans, D. Y. Graham, M. Miyasaka, D. C. Anderson, R. E. Wolf, G. Cepinskas, and P. R. Kvietys. 1994. Helicobacter pylori-induced microvascular protein leakage in rats: role of neutrophils, mast cells, and platelets. Gastroenterology 107: 70-79.

Lai, C. H., C. H. Kuo, Y. C. Chen, F. Y. Chao, S. K. Poon, C. S. Chang, and W. C. Wang. 2002. High prevalence of cagA- and babA2-positive Helicobacter pylori clinical isolates in Taiwan. J. Clin. Microbiol. 40: 3860-3862.

Lee, W. K., S. H. Choi, S. G. Park, M. Y. Choe, S. A. Jeong, J. W. Park, J. Y. Song, S. C. Baik, M. J. Cho, and K. H. Rhee. 2000. Gene rearrangement in the genome of Helicobacter pylori. (abstract). ASM D-253.

Lin, J. T., L. Y. Wang, J. T. Wang, T. H. Wang, and C. J. Chen. 1995. Ecological study of association between Helicobacter pylori infection and gastric cancer in Taiwan. Dig. Dis. Sci. 40: 385-388.

Lin, C. W., Y. S. Chang, S. C. Wu, and K. S. Cheng. 1998. Helicobacter pylori in gastric biopsies of Taiwanese patients with gastroduodenal diseases. Jpn. J. Med. Sci. Biol. 51: 13-23.

Lin, C. W., S. C. Wu, S. C. Lee, and K. S. Cheng. 2000. Genetic analysis and clinical evaluation of vacuolating cytotoxin gene A and cytotoxin-associated gene A in Taiwanese Helicobacter pylori isolates from peptic ulcer patients. Scand. J. Infect. Dis. 32: 51-57.

Lupetti, P., J. E. Heuser, R. Manetti, P. Massari, S. Lanzavecchia, P. L. Bellon, R. Dallai, R. Rappuoli, and J. L. Telford. 1996. Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin. J. Cell Biol. 133: 801-807.

Macnab, R. M. Flagella and motility, in Escherichia coli and Samonella: cellular and molecular biology, in: Neidhardt, et al. (Eds.), ASM Press, Washington, D. C., 1996, pp. 123-145.

Mahdavi, J., B. Sonden, M. Hurtig, F. O. Olfat, L. Forsberg, N. Roche, J. Angstrom, T. Larsson, S. Teneberg, K. A. Karlsson, S. Altraja, T. Wadstrom, D. Kersulyte, D. E. Berg, A. Dubois, C. Petersson, K. E. Magnusson, T. Norberg, F. Lindh, B. B. Lundskog, A. Arnqvist, L. Hammarstrom, and T. Borén. 2002. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297: 573-578.

Marais, A., G. L. Mendz, S. L. Hazell, and F. Megraud. 1999. Metabolism and genetics of Helicobacter pylori: the genome era. Microbiol. Mol. Biol. Rev. 63: 642-674.

Marshall, B. J. and J. R. Warren. 1984. Unidentified curved bacilli in the stomach of the patients with gastritis and peptic ulceration. Lancet 1: 1311-1315.

Megraud, F. 1993. Epidemiology of Helicobacter pylori infection. Gastroenterol. Clin. North. Am. 22: 73-88.

Miehlke, S., K. Kibler, J. G. Kim, N. Figura, S. M. Small, D. Y. Graham, and M. F. Go. 1996. Allelic variation in the cagA gene of Helicobacter pylori obtained from Korea compared to the United States. Am. J. Gastroenterol. 91: 1322-1325.

Mizushima, T., T. Sugiyama, Y. Komatsu, J. Ishizuka, M. Kato, and M. Asaka. 2001. Clinical relevance of the babA2 genotype of Helicobacter pylori in Japanese clinical isolates. J. Clin. Microbiol. 39: 2463-2465.

Mobley, H. L., M. D. Island, and R. P. Hausinger. 1995. Molecular biology of microbial ureases. Microbiol. Rev. 59: 451-480.

Montecucco, C., M. De Bernard, E. Papini, and M. Zoratti. 2001. Helicobacter pylori vacuolating cytotoxin: cell intoxication and anion-specific channel activity. Curr. Top. Microbiol. Immunol. 257: 113-129.

Moxon, E. R., P. B. Rainey, M. A. Nowak and R. E. Lenski. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4: 24-33.

Naumann, M., S. Wessler, C. Bartsch, B. Wieland, A. Covacci, R. Haas and T. F. Meyer. 1999. Activation of activator protein 1 and stress response kinases in epithelial cells colonized by Helicobacter pylori encoding the cag pathogenicity island. J Biol Chem 274: 31655-31662.

O'Toole, P. W., M. C. Lane, and S. Porwollik. 2000. Helicobacter pylori motility. Microbes. Infect. 2: 1207-1214.

Odenbreit, S., M. Till, D. Hofreuter, G. Faller, and R. Haas. 1999. Genetic and functional characterization of the alpAB gene locus essential for the adhesion of Helicobacter pylori to human gastric tissue. Mol. Microbiol. 31: 1537-1548.

Odenbreit, S., J. Puls, B. Sedlmaier, E. Gerland, W. Fischer, and R. Haas. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287: 1497-1500.

Odenbreit, S., H. Kavermann, J. Puls, and R. Haas. 2002. CagA tyrosine phosphorylation and interleukin-8 induction by Helicobacter pylori are independent from AlpAB, HopZ and Bab group outer membrane proteins. Int. J. Med. Microbiol. 292: 257-266.

Pakodi, F., O. M. Abdel-Salam, A. Debreceni, and G. Mozsik. 2000. Helicobacter pylori. One bacterium and a broad spectrum of human disease! An overview. J. Physiol. Paris. 94: 139-152.

Pan, Z. J., R. W. van der Hulst, M. Feller, S. D. Xiao, G. N. Tytgat, J. Dankert, and A. van der Ende. 1997. Equally high prevalences of infection with cagA-positive Helicobacter pylori in Chinese patients with peptic ulcer disease and those with chronic gastritis-associated dyspepsia. J. Clin. Microbiol. 35: 1344-1347.

Parsonnet, J., S. Hansen, L. Rodriguez, A. B. Gelb, R. A. Warnke, E. Jellum, N. Orentreich, J. H. Vogelman, and G. D. Friedman. 1994. Helicobacter pylori infection and gastric lymphoma. N. Engl. J. Med. 330: 1267-1271.

Peck, B., M. Ortkamp, K. D. Diehl, E. Hundt, and B. Knapp. 1999. Conservation, localization and expression of HopZ, a protein involved in adhesion of Helicobacter pylori. Nucleic Acids Res. 27: 3325-3333.

Phadnis, S. H., M. H. Parlow, M. Levy, D. Ilver, C. M. Caulkins, J. B. Connors, and B. E. Dunn. 1996. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect. Immun. 64: 905-912.

Price A. B. 1999. Classification of gastritis-yesterday, today, and tomorrow. Verh. Dtsch. Ges. Pathol. 83: 52-55.

Prinz, C., M. Schoniger, R. Rad, I. Becker, E. Keiditsch, S. Wagenpfeil, M. Classen, T. Rosch, W. Schepp, and M. Gerhard. 2001. Key importance of the Helicobacter pylori adherence factor blood group antigen binding adhesin during chronic gastric inflammation. Cancer Res. 61: 1903-1909.

Rad, R., M. Gerhard, R. Lang, M. Schoniger, T. Rosch, W. Schepp, I. Becker, H. Wagner, and C. Prinz. 2002. The Helicobacter pylori blood group antigen-binding adhesin facilitates bacterial colonization and augments a nonspecific immune response. J. Immunol. 168: 3033-3041.

Rieder, G., R. A. Hatz, A. P. Moran, A. Walz, M. Stolte, and G. Enders. 1997. Role of adherence in interleukin-8 induction in Helicobacter pylori-associated gastritis. Infect. Immun. 65: 3622-3630.

Romaniuk, P. J., B. Zoltowska, T. J. Trust, D. J. Lane, G. J. Olsen, N. R. Pace, and D. A. Stahl. 1987. Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp. J. Bacteriol. 169: 2137-2141.

Satin, B., G. Del Giudice, V. Della Bianca, S. Dusi, C. Laudanna, F. Tonello, D. Kelleher, R. Rappuoli, C. Montecucco, and F. Rossi. 2000. The neutrophil
-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. J. Exp. Med. 191: 1467-1476.

Schmitt, W. and R. Haas. 1994. Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol. Microbiol. 12: 307-319.

Segal, E. D., J. Cha, J. Lo, S. Falkow, and L. S. Tompkins. 1999. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl. Acad. Sci. U. S. A. 96: 14559-14564.

Selbach, M., S. Moese, C. R. Hauck, T. F. Meyer, and S. Backert. 2002. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J. Biol. Chem. 277: 6775-6778.

Selbach, M., S. Moese, R. Hurwitz, C. R. Hauck, T. F. Meyer, and S. Backert. 2003. The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. EMBO J. 22: 515-528.

Sheu, S. M., B. S. Sheu, H. B. Yang, C. Li, T. C. Chu, and J. J. Wu. 2002. Presence of iceA1 but not cagA, cagC, cagE, cagF, cagN, cagT, or orf13 genes of Helicobacter pylori is associated with more severe gastric inflammation in Taiwanese. J. Formos. Med. Assoc. 101: 18-23.

Sheu, B. S., S. M. Sheu, H. B. Yang, A. H. Huang, and J. J. Wu. 2003. Host gastric Lewis expression determines the bacterial density of Helicobacter pylori in babA2 genopositive infection. Gut 52: 927-932.

Shibata, A., N. Hamajima, Y. Ikehara, T. Saito, K. Matsuo, N. Katsuda, K. Tajima, M. Tatematsu, and S. Tominaga. 2003. ABO blood type, Lewis and Secretor genotypes, and chronic atrophic gastritis: a cross-sectional study in Japan. Gastric Cancer 6: 8-16.

Stein, M., R. Rappuoli, and A. Covacci. 2000. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc. Natl. Acad. Sci. U. S. A. 97: 1263-1268.

Syder, A. J., J. L. Guruge, Q. Li, Y. Hu, C. M. Oleksiewicz, R. G. Lorenz, S. M. Karam, P. G. Falk, and J. I. Gordon. 1999. Helicobacter pylori attaches to NeuAc alpha 2,3 Gal beta 1,4 glycoconjugates produced in the stomach of transgenic mice lacking parietal cells. Mol. Cell 3: 263-274.

Taylor, K. L., A. S. Mall, R. A. Barnard, S. B. Ho, J. P. Cruse, K. J. Taylor, V. Edwards-Jones, M. Armitage, D. E. Taylor, D. A. Rasko, R. Sherburne, C. Ho, L. D. Jewell, G. Wang, Q. Jiang, R. N. Fedorak, M. T. Whary, T. J. Morgan, C. A. Dangler, K. J. Gaudes, N. S. Taylor, J. G. Fox, M. A. Monteiro, K. H. Chan, P. Y. Zheng, B. J. Appelmelk, H. P. Wirth, M. Yang, M. J. Blaser, S. O. Hynes, A. P. Moran, M. B. Perry, Z. Ge, D. Rasko, K. Varis, P. R. Taylor, P. Sipponen, I. M. Samloff, O. P. Heinonen, D. Albanes, M. Harkonen, J. K. Huttunen, F. Laxen, J. Virtamo, N. S. Akopyants, D. E. Berg, M. S. Kalisiak, D. Purych, T. Lo, and K. Hiratsuka. 1998. Immunohistochemical detection of gastric mucin in normal and disease states. Br. J. Biomed. Sci. 55: 465-473.

Teh, B. H., J. T. Lin, W. H. Pan, S. H. Lin, L. Y. Wang, T. K. Lee, and C. J. Chen. 1994. Seroprevalence and associated risk factors of Helicobacter pylori infection in Taiwan. Anticancer. Res. 14: 1389-1392.

Teneberg, S., H. Miller-Podraza, H. C. Lampert, D. J. Evans, Jr., D. G. Evans, D. Danielsson, and K. A. Karlsson. 1997. Carbohydrate binding specificity of the neutrophil-activating protein of Helicobacter pylori. J. Biol. Chem. 272: 19067-19071.

Tomb, J. F., O. White, A. R. Kerlavage, R. A. Clayton, G. G. Sutton, R. D.
Fleischmann, K. A. Ketchum, H. P. Klenk, S. Gill, B. A. Dougherty, K. Nelson, J. Quackenbush, L. Zhou, E. F. Kirkness, S. Peterson, B. Loftus, D. Richardson, R. Dodson, H. G. Khalak, A. Glodek, K. McKenney, L. M. Fitzegerald, N. Lee, M. D. Adams, and J. C. Venter, et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539-547.

Tonello, F., W. G. Dundon, B. Satin, M. Molinari, G. Tognon, G. Grandi, G. Del Giudice, R. Rappuoli, and C. Montecucco. 1999. The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Mol. Microbiol. 34: 238-246.

Wang, L. Y., J. T. Lin, Y. W. Cheng, S. J. Chou, and C. J. Chen. 1996. Seroepidemiology of Helicobacter pylori among adolescents in Taiwan. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 29: 10-17.

Wang, H. J., C. H. Kuo, A. A. Yeh, P. C. Chang, and W. C. Wang. 1998. Vacuolating toxin production in clinical isolates of Helicobacter pylori with different vacA genotypes. J. Infect. Dis. 178: 207-212.

Weeks, D. L., S. Eskandari, D. R. Scott, and G. Sachs. 2000. A H+ gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287: 482-485.

Wirth, H. P., M. Yang, R. M. Peek, Jr., K. T. Tham, and M. J. Blaser. 1997. Helicobacter pylori Lewis expression is related to the host Lewis phenotype. Gastroenterology 113: 1091-1098.

Wong, B. C., Y. Yin, D. E. Berg, H. H. Xia, J. Z. Zhang, W. H. Wang, W. M. Wong, X. R. Huang, V. S. Tang, and S. K. Lam. 2001. Distribution of distinct vacA, cagA and iceA alleles in Helicobacter pylori in Hong Kong. Helicobacter 6: 317-324.

Yahiro, K., T. Niidome, M. Kimura, T. Hatakeyama, H. Aoyagi, H. Kurazono, K. Imagawa, A. Wada, J. Moss, and T. Hirayama. 1999. Activation of Helicobacter pylori VacA toxin by alkaline or acid conditions increases its binding to a 250-kDa receptor protein-tyrosine phosphatase beta. J. Biol. Chem. 274: 36693-36699.

Yamaguchi, H., T. Osaki, N. Kurihara, H. Taguchi, T. Hanawa, T. Yamamoto, and S. Kamiya. 1997. Heat-shock protein 60 homologue of Helicobacter pylori is associated with adhesion of H. pylori to human gastric epithelial cells. J. Med. Microbiol. 46: 825-831.

Yamaoka, Y., T. Kodama, K. Kashima, D. Y. Graham, and A. R. Sepulveda. 1998. Variants of the 3' region of the cagA gene in Helicobacter pylori isolates from patients with different H. pylori-associated diseases. J. Clin. Microbiol. 36: 2258-2263.

Yamaoka, Y., M. Kita, T. Kodama, S. Imamura, T. Ohno, N. Sawai, A. Ishimaru, J. Imanishi, and D. Y. Graham. 2002. Helicobacter pylori infection in mice: Role of outer membrane proteins in colonization and inflammation. Gastroenterology 123: 1992-2004.

Yang, J. C., T. H. Wang, H. J. Wang, C. H. Kuo, J. T. Wang, and W. C. Wang. 1997. Genetic analysis of the cytotoxin-associated gene and the vacuolating toxin gene in Helicobacter pylori strains isolated from Taiwanese patients. Am. J. Gastroenterol. 92: 1316-1321.

Yoshida, N., D. N. Granger, D. J. Evans, Jr., D. G. Evans, D. Y. Graham, D. C. Anderson, R. E. Wolf, and P. R. Kvietys. 1993. Mechanisms involved in Helicobacter pylori-induced inflammation. Gastroenterology 105: 1431-1440.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top