跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/09 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊程翔
論文名稱:以折反射取像系統進行對焦測距
論文名稱(外文):Depth from Focusing Using a Catadioptric Imaging System
指導教授:石勝文石勝文引用關係
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:68
中文關鍵詞:折反射取像系統對焦測距攝影機鏡頭凸面鏡全景影像全景對焦測距
外文關鍵詞:catadioptric imaging systemdepth from focusvideo lensconvex mirrorpanoramic imagepanoramic DFF
相關次數:
  • 被引用被引用:1
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:1
在本論文中,我們提出一個利用折反射取像系統進行對焦測距的方法。折反射取像系統通常包括兩種主要的光學元件:攝影機鏡頭與凸面鏡。其中,凸面鏡之用途是將距離攝影機鏡頭遠處的物體轉換到對於攝影機鏡頭而言有顯著接近的地方。由於對焦測距在近距離的測量上有十分理想的表現,因此,我們期望這個新系統可以同時取得全景影像並且提供準確的深度估測結果。為了驗證這個構想,我們發展出一套實驗用的全景對焦測距系統。我們也在論文中提出了此全景對焦測距系統的校正方法以及深度估測方法。而為了驗證以及實做以上提出的方法,我們也進行了數項實驗。實驗結果顯示校正方法運作一如預期,但是深度測距的方法必須要做進一步的改進。
In this thesis, a method for computing depth from focus (DFF) using a catadioptric imaging system is described. The catadioptric imaging system consists of two major optical parts, one is the video lens and the other is the convex mirror. The convex mirror is used to map objects at a long distance into virtual images having a much shorter effective object distance to the camera. Because the DFF technique usually has an excellent performance in close range measurements, it is expected that the new system can provide accurate depth estimates using panoramic images. To verify this idea, an experimental panoramic DFF (PDFF) system is developed. A calibration method and a depth estimation method for this PDFF system is proposed in this thesis. Experiments have been conducted to verify the proposed methods. The results showed that the calibration method worked as expected but the depth estimation method still need to be improved.
誌謝 I
中文摘要 II
Abstract III
List of Figures VII
List of Tables X
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Works . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Catadioptric Imaging Systems . . . . . . . . . . 4
1.2.2 Depth from Focus . . . . . . . . . . . . . . . . 5
1.3 Organization of This Thesis . . . . . . . . . . . . . 7
2 Image Formation by a Catadioptric Imaging System 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . 10
2.2 Panoramic Imaging System with a Convex Mirror . . . . 11
2.3 Image Formation . . . . . . . . . . . . . . . . . . . 12
2.3.1 Image Formation by a Conventional Camera Lens . 13
2.3.2 Image Formation by a Convex Mirror . . . . . . .14
2.4 Image Blur Factors . . . . . . . . . . . . . . . . . 16
2.4.1 Image Blur Caused by a Video Lens . . . . . . . 16
2.4.2 Image Blur Caused by a Convex Mirror . . . . . .18
3 Calibration 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . 20
3.2 Camera Model . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Extrinsic and Intrinsic Parameters . . . . . . 21
3.2.2 Adaptive Intrinsic Camera Parameters . . . . . 24
3.3 Calibration of the Mirror Parameters . . . . . . . . 24
4 Panoramic Depth Estimation 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . 29
4.2 Image Normalization . . . . . . . . . . . . . . . . . 30
4.3 Depth from Focus . . . . . . . . . . . . . . . . . . 32
4.3.1 3-D Recovery from the Virtual Image Location . 34
5 Experimental Results 38
5.1 Introduction . . . . . . . . . . . . . . . . . . . . 38
5.2 Implementation of the System . . . . . . . . . . . . 39
5.3 Calibration Results . . . . . . . . . . . . . . . . . 42
5.3.1 Extrinsic and Intrinsic Camera Parameters . . . 42
5.3.2 Adaptive Intrinsic Camera Parameters . . . . . 43
5.3.3 Mirror Parameters . . . . . . . . . . . . . . . 43
5.4 Panoramic Depth Estimation . . . . . . . . . . . . . 50
6 Conclusion and Future Work 58
Bibliography 61
[1] U. R. Dhond and J. K. Aggarwal, “Sturucture from Stereo - A Review,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, pp. 1489—1510, November/December 1989.
[2] R. Zhang, P.-S. Tsai, J. Cryer, and M. Shah, “Shape from Shading: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, pp. 690—706, August 1999.
[3] T. S. Huang and A. N. Netravali, “Motion and Structure from Feature Correspondences: A Review,” Proceedings of the IEEE, vol. 82, pp. 252—268, Febuary 1994.
[4] S. Loncaric, “A Survey of Shape Analysis Techniques,” Pattern Recognition, vol. 31, no. 8, pp. 983—1001, 1998.
[5] B. Horn, “Focusing,” Technical Memo 160, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1968.
[6] P. Grossmann, “Depth from Focus,” Pattern Recognition Letters, vol. 5, no. 1, pp. 63—69, 1987.
[7] A. P. Pentland, “A New Sense for Depth of Field,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9, pp. 523—531, July 1987.
[8] A. L. Abbott, Dynamic Integration of Depth Cues for Surface Reconstruction from Stereo Images. PhD thesis, University of Illinois at Urbana-Champaign, 1990.
[9] S. K. Nayar, M. Watanabe, and M. Noguchi, “Real-time Focus Range Sensor,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 1186—1198, December 1996.
[10] Y. Xiong and S. A. Shafer, “Depth from Focusing and Defocusing,”in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 68—73, 1993.
[11] B. Vikramaditya and B. J. Nelson, “Visually Guided Microassembly Using Optical Microscopes and Active Vision Techniques,” in Proceedings of the IEEE Conference on Robotics and Automation, vol. 4, pp. 3172—3177, 1997.
[12] E. Hecht, Optics. Addison Wesley, 4th ed., 2001.
[13] R. Benosman and S. B. Kang, Panoramic Vision: Sensors, Theory, Applications. Springer-Verlag, 2001.
[14] C. Geyer and K. Daniilidis, “Structure and Motion from Uncalibrated Catadioptric Views,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I—279—I—286, 2001.
[15] J. M. Gluckman and S. K. Nayar, “Rectified Catadioptric Stereo Sensors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 224—236, February 2002.
[16] S.-S. Lin and R. Bajcsy, “High Resolution Catadioptric Omni-Directional Stereo Sensor for Robot Vision,” in Proceedings of the IEEE Conference on Robotics and Automation, pp. 1694—1699, 2003.
[17] S. K. Nayar and V. Peri, “Folded Catadioptric Cameras,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 217—223, 1999.
[18] J. Hong, X. Tan, B. Pinette, R. Weiss, and E. M. Riseman, “Image-based Homing,” in Proceedings of the IEEE Conference on Robotics and Automation, vol. 1, pp. 620—625, 1991.
[19] K. Yamazawa, Y. Yagi, and M. Yachida, “Omnidirectional Imaging with Hyperboloidal Projection,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and System, vol. 2, pp. 1029—1034, 1993.
[20] S. Baker and S. K. Nayar, “A Theory of Single-Viewpoint Catadioptric Image Formulation,” International Journal of Computer Vision, vol. 35, no. 2, pp. 175—196, 1999.
[21] D. W. Rees, “Panoramic Television Viewing System.” U.S. Patent No.3505465, April 1970.
[22] S. Bogner, “Introduction to Panoramic Imaging,” in Proceedings of the IEEE SMC Conference, pp. 3100—3106, 1995.
[23] T. Okatani and K. Deguchi, “On Photometric Aspects of Catadioptric Cameras,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I—1106—I—1113, 2001.
[24] S. K. Nayar, J. Gluckman, R. Swaminathan, S. Lok, and T. Boult,“Catadioptric Video Sensors,” in Proceedings of the IEEE Workshop on Applications of Computer Vision, pp. 236—237, 1998.
[25] S. A. Nene and S. K. Nayar, “Stereo with Mirrors,” in Proceedings of the International Conference on Computer Vision, pp. 1087—1094, 1998.
[26] P. Doubek and T. Svoboda, “Reliable 3D Reconstruction from a few Catadioptric Images,” in Proceedings of the Workshop on Omnidirectional Vision, pp. 71—78, 2002.
[27] J.-K. Tyan, Analysis and Application of Autofocusing and Three-Dimensional Shape Recovery Techniques based on Image Focus amd Defocus. PhD thesis, Electrical Engineering, State University of New York at Stony Brook, 1997.
[28] E. P. Krotkov, Active Computer Vision by Cooperative Focusing and Stereo. Springer-Verlag, 1989.
[29] J. M. Tenenbaum, Accommodation in Computer Vision. PhD thesis, Stanford University, 1970.
[30] J. Schlag, A. Sanderson, C. Neuman, and F. Wimberly, “Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control,” Technical Report CMU-RI-TR-83-14, Robotics Institute, Carnegie Mellon University, August 1983.
[31] R. A. Jarvis, “Focus Optimization Criteria for Computer Image Processing,” Microscope, vol. 24, no. 2, pp. 163—180, 1976.
[32] E. P. Krotkov and J. P. Martin, “Range from Focus,” Technical Report MS-CIS-86-09, University of Pennsylvania, January 1986.
[33] M. Subbarao, T. Choi, and A. Nikzad, “Focusing techniques,” Journal of Optical Engineering, vol. 32, pp. 2824—2836, November 1992.
[34] M. Subbarao and J.-K. Tyan, “Selecting the Optimal Focus Measure for Autofocusing and Depth-From-Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 864—870, August 1998.
[35] S. K. Nayar and Y. Nakagawa, “Shape from Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, pp. 824—831, August 1994.
[36] M. Subbarao and T. Choi, “Accurate Recovery of Three-dimensional Shape from Image Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 266—274, March 1995.
[37] R. G. Willson and S. A. Shafer, “Precision Imaging and Control at Carnegie Mellon University,” Technical Report CMU-CS-92-118, School of Computer Science, Carnegie Mellon University, 1992.
[38] M. Watanabe and S. K. Nayar, “Telecentric Optics for Focus Analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 1360—1365, December 1997.
[39] G. Blahusch, W. Eckstein, and C. Steger, “Calibration of Curvature of Field for Depth from Focus,” in Proceedings of the International Archives of Photogrammetry and Remote Sensing, vol. XXXIV, Part 3/W8, pp. 173—177, 2003.
[40] R. Y. Tsai, “An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 364—374, 1986.
[41] S.-W. Shih, Y.-P. Hung, and W.-S. Lin, “Accurate Linear Technique for Camera Calibration Considering Lens Distortion by Solving an Eigenvalue Problem,” Optical Engineering, vol. 32, pp. 138—149, January 1993.
[42] Y.-S. Chen, S.-W. Shih, Y.-P. Hung, and C.-S. Fuh, “Simple and Efficient Method for Calibrating a Motorized Zoom Lens,” Image and Vision Computing, vol. 19, pp. 1099—1110, November 2001.
[43] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge University Press, second ed., 2004.
[44] C.-S. Chen andW.-Y. Chang, “On Pose Recovery for Generalized Visual Sensors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, pp. 848—861, July 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top