(3.238.173.209) 您好!臺灣時間:2021/05/17 12:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳昭延
論文名稱:三相流微模型試驗之物理現象
論文名稱(外文):Experimental study on the pyhsical phenomenon of multi-phases flow using micro-model
指導教授:張良正張良正引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:123
中文關鍵詞:可透視微模型非水相液體三相流體
外文關鍵詞:Perspective Micro-modelNAPLThree phase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
在真實環境系統中污染物大多以多相流系統存在含水層中,包含了水相、氣相及非水液相(Non-Aqueous-Phase-Liquid, NAPL),若能對此三相流彼此間之相對滲透係數-飽和度-毛細壓力的函數關係有進一步瞭解,作為目前模式轉換的核心,模擬NAPL於土壤及地下水中之傳輸行為。本研究以可透視微模型模擬多孔介質進行多相流體k-S-P實驗,其優點在於可清楚的觀察到多孔介質中多相流體的流動機制。配合數位影像分析觀察多孔界質中多相流的微觀行為,更可精確的測量介質中的飽和度,並且取得三相之間的相對滲透係數-飽和度-毛細壓力的關係曲線。利用雷射雕刻工具,可以模擬土壤的多孔介質複製微模型,以進行多組重複、對照性的實驗。
本研究成功地求得三相共存時k-S-P的關係,有別於前人將P-S實驗與k-S實驗所求得之數據,再以經驗公式連貫P-S、k-S之間的關係。由本研究成果顯示,在三相共存時,當非濕潤相之非水液相與空氣兩者飽和度的比例不同時,會影響濕潤相的相對滲透係數。本研究所取得的實驗數據,並可進一步做為數值模式之輸入參數,而進一步探討此關係曲線對NAPL在土壤中傳輸及宿命之影響。
Contaminants exist in aquifer on pollution site on behave of three phase-type including of water phase, air phase and NAPLs. If we comprehend the relations of between relative permeability, saturation, and capillary pressure, the transport behavior of NAPLs in subsurface and groundwater could be described completely. Although the sand tank model is conventionally adopted to examine the relation permeability, saturation and capillary pressure, this model is difficult to control, has a low accuracy, and lacks experience in repeats. This study adopts the perspective micro-model and performs digital image analysis (DIA) to examine the micro-behavior of multiphase flow systems in porous media and obtain the curve of relation between relative permeability, saturation, and capillary pressure. The perspective micro-model allows experimenters to clearly observe the multiphase flow systems in porous media. Additionally combining the model with digital image analysis, allows us to precisely measure the saturation of media. Moreover, by using laser tools, a large number of porous media which are identical in all aspects can be reproduced to repeat numerous comparative sets of an experiment.
This study successfully obtains the k-S-P relationships of coexisting three-fluids using micro-model experiment. This approach is different from previous study which combines with the data of k-S curve and P-S curve. And then, the k-S-P relationships could be obtained by k-S curves and P-S curves. The results in this study also reveal that different saturation ratio of non-wetting phase (NAPL phase and gas phase) in three-fluids; the relative permeability of wetting phase (water) would be indeed affected.
目錄
第一章 緒論
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的 5
第二章 研究步驟
第三章 相關理論
3.1飽和度 13
3.2界面張力 14
3.3溼潤度 14
3.4毛細壓力 16
3.5進入壓 16
3.6土壤液體保持特性 17
3.6.1 保持曲線之定義 17
3.6.2 汲取與渲排作用 18
3.6.3遲滯效應 19
3.7殘餘飽和度 20
3.8 滲透係數 21
3.9 有機液體在不飽和層中的行為 23
第四章 研究方法
4.1 雷射雕刻技術 32
4.2 試驗裝置 32
4.2.1 微模型 33
4.2.2 試驗液體 37
4.2.3 壓力控制系統 38
4.2.4 CCD攝影機 39
4.2.5 XY平台 40
4.2.6 k-S-P 實驗配置 40
4.3 微抹型板之表面處理 41
4.3.1 矽酸鈉的特性 42
4.3.2 矽酸鈉使用前後之比較 42
4.4 k-S-P實驗程序 43
4.4.1 事前準備 43
4.4.2 實驗過程 43
4.4.3 影像分析 47
第五章 實驗結果討論
5.1 P-S relation 61
5.2 K-S relation 64
5.3 K-S-P 各組實驗之討論 65
5.3.1 W-O-A relation 65
5.3.2 W-A-O relation 66
5.3.3 W-D-A relation 68
5.3.4 W-A-D relation 70
5.3.5 O-A-W relation 71
5.3.6 O-W-A relation 73
5.4 k-S-P實驗之壓力-飽和度比較 75
5.5 k-S-P實驗之相對滲透係數-飽和度比較 76
5.6 綜合討論 78
5.7 Parker經驗公式之討論 80
第六章 結論與建議
6.1 結論 115
6.2 建議 116
第七章 參考文獻
1. 呂元鈞,”非水相液滲透係數-飽和度-毛細壓力關係之微模型試驗研究”, 國立交通大學土木工程研究所碩士論文,2002。
2. 石永祺,”可透視微模型實驗於毛細壓力-飽和度關係之研究”, 國立交通大學土木工程研究所碩士論文,2001。
3. 陳宇文,”類神經網路於入滲池最佳化設計之應用”,國立交通大學土木工程研究所碩士論文,1999。
4. 陳式千,”地下水污染監測系統調查研究”,行政院環境保護署,1992。
5. 陳鴻輝,”壓密導致孔隙率變化對保水曲線的影響”,國立中央大學土木工程研究所碩士碩文,1990。
6. 歐國隆,”遲滯效應及尺度原則對NAPLs於孔隙介質中傳輸模擬之影響”, 國立交通大學土木工程研究所碩士論文,2000。
7. 靳佩芳,”以示蹤劑試驗推估LNAPLs對地下水污染行為之研究”,國立中興大學環境工程研究所碩士論文,1998。
8. 黃進富,”土壤中水/有機液體保持特性研究”,國立交通大學土木工程研究所碩士論文,1996。
9. 鄭淑華,”不飽和層中有機液體保持特性研究”,國立交通大學土木工程研究所碩士論文,1997。
10. 盧至人,”受氯化有機物污染之地下水的生物復育”,行政院環境保護署,1992。
11. Abriola, L. M., and G. F. Pinder, “A multiphase approach to the modeling of porous media contamination, by organic compounds, 2, Numerical simulation”, Water Resour. Res., 21, 19-26, 1985.
12. Baker, L. E., “Three-phase relative permeability correlations”, Paper 17369. Soc. of Pet. Eng., Tulsa OK, 1988.
13. Bedient, Philip B., Rifai, Hanadi S., and Newell, Charles J., “Ground water contamination: transport and remediation”, Englewood Cliffs/PTR Prentice Hall , 1994.
14. Calhoun, Jr., J.C., Lewis, Jr., M., and Newman, R.C., “Experiments on the capillary properties of porous solids”, Pet. Trans. AIME, pp.189-196,1949.
15. Jia.C., K Shing , Y.C. Yortsos,” Visualization and simulation of non-aqueous phase liquids solubilization in pore networks.” Journal of Contaminant Hydrology 35(1999) 363-387.
16. Corey, A. T., “Mechanics of immiscible fluids in porous media”, Water Resources Publications, Fort Collins, CO, 2nd ed., 35-39, 1986.
17. Davidson, J. M., Nielsen, D. R., and Biggar, J. W., “The dependency of Soil Water Uptake and Release on the Applied Pressure Increment”, Soil Science Society of America, Proc., 30, 198-304, 1966.
18. Delshad, M. and Pope, G. A., “Comparison of the three-phase relative permeability models”, Transp. In Porous Media, 4, 59-83, 1989.
19. Demond, A. H. and Roberts, P. V., “Effect of interfacial forces on two-phase capillary pressure-saturation relationships”, Water Resour. Res., 27, 423-437,1991.
20. Demond, A. H. and Roberts, P. V., “Estimation of two-phase relative permeability relationships for organic liquid contaminants”, Water Resour. Res., 29, 1081-1090, 1993.
21. Fetter,C.W.,”Containant Hydrogeology”,Macmillan Publishing Company ,New York,pp.168-175.,1993
22. Garden, W.R.,”Calculation of capillary conductivity from press plate outflow data,”Proceeding of the Soil Science Society of Ameica,Vol.20,No.3pp.317-320.
23. Guarnaccia, J. F., G. F. Pinder, and M. Fishman, “NAPL, Simulator Documentation, Final Report”, EPA Cooperative Agreement No. CR-820499, 1997.
24. Haines, W.B.,”Studies in the Physical Properties of Soil:V. The Hyeteresis Effect in Capillary Properties and the Modes of Moisture Associated Therewith,”Journal of Agricultural Science,Vol.20,pp.97-116,1930.
25. Hillel,Daniel.”Fundamentals of Soil Physics”,New York:Academic Press,Inc,413 pp.,1980.
26. Hoa, H. T., R. Gaudu, and C. Thirriot, “Influence of the hysteresis effect on transient flows in saturated-unsaturated porous media”, Water Resour. Res., 13, 992-996, 1977.
27. Wan Jiamin and John L.Wilson, Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media.”,Water Resources Research,Vol.30,No.1,Page 11-23,January 1994.
28. Kaluarachchi, J., and J. C. Parker, “Effects of hysteresis on water flow in the unsaturated zone”, Water Resour. Res., in press, 1988.
29. Kool, J. B., and J. C. Parker, “Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties”, Water Resour. Res., 23, 105-114, 1987.
30. Lenhard, R. J., and J. C. Parker, “Measurement and Prediction of Saturation-Pressure Relationships in Three-Phase Porous Media Systems”, Journal of Contaminant Hydrology, 1, 407-424, 1987.
31. Lenhard, R. J., M. Oostrom, C. S. Simmons, and M.D. White,” Investigation of density-dependent gas advection of trichloroethylene: Experiment and a model validation exercise”, Journal of Contaminant Hydrology, 19, 47-67, 1995.
32. Leverett, M. C., “Capillary behavior in porous solids”, Trans. AIME, 142, 152-169, 1941.
33. Lyman, W. J., Reehl, W. F. and Rosenblatt, D. H., “Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds”, McGraw-Hill, New York, N.Y., 1982.
34. Mercer, J. W., and R. M. Cohen, “A review of immiscible fluids in the subsurface properties, models, characterization and remediation”, J. Contam. Hydrol. Vol. 6, 107-163, 1990.
35. Mualem, Y., “A new model for predicting the hydraulic conductivity of unsaturated porous media”, Water Resour. Res., 12(3), 513-522, 1976
36. M.Yavuz Corapcioglu and Paula Fedirchuk,” Glass bead micromodel study of solute transport ” ,Journal of Contaiminant Hydrology 36(1999) 209-230.
37. Oostrom, M., and R. J. Lenhard, “Comparison of relative permeability-saturation-pressure parametric models for infiltration and redistribution of a light nonaqueous-phase liquid in sandy porous media”, Advances in Water Resources, 21, 145-157, 1998.
38. Parker, J. C. and R. J. Lenhard, “A model for hysteretic constitutive relations governing multiphase flow: 1. Saturation-pressure relations”, Water Resour. Res., 23(12), 2187-2196, 1987.
39. Parker, J. C. and R. J. Lenhard, “A model for hysteretic constitutive relations governing multiphase flow: 2.Permeability-Saturation relations”, Water Resour. Res., 23(12), 2197-2206, 1987.
40. Parker, J. C., R. J. Lenhard, and T. Kuppusamy, “A parametric model for constitutive properties governing multiphase flow in porous media”, Water Resour. Res., 23(4), 618-624, 1987.
41. Pinder, G. F., L. M. Abriola, “On the simulation of nonaqueous phase organic compounds in the subsurface”, Water Resour. Res., 22(9), 109-119, 1986.
42. Randall J.Charbeneau, “Groungwater Hydraulics and Pollutant Transport”, Prentice Hall , 2000.
43. Soll, W.E. and Wilson J.L.,”Micromodel Studies of three-Fluid Porous Media Systems:Pore-Scale Process Relating to Capillary Pressure-Saturation Relationships ,” Water Resources Research ,Vol.29,No.9,pages 2963-2974,September 1993.
44. Oren P.E. and Pinczewski ,W.V. ,“Fluid distribution and pore-scale displacement mechanisms in drainage three-phase flow”,Transport in Porous Media 20(1-2), 105-133,1995.
45. Heiba, A. A., Davis, H. T. & Scriven, L. E., “Statistical network theory of three-phase relative permeabilities. Paper SPE 12690, Proceedings of the 1984 4th DOE/SPE Symposium on Enhanced Oil Recovery, Tulsa, OK, April.
46. Spillette, A. G., J. G. Hillestad, and H. L. Stone, “A high-stability sequential solution approach to reservoir simulation”, Soc. Pet. Eng. 48th Annual Meeting, Las Vegas, Nev., S.P.E. Paper No. 4542, 14 pages, 1973.
47. Stevenson, F.J., “Humus Chemistry”, Wiley and Sons, 444p.,1982.
48. Stone, H. L., “Estimation of three-phase relative permeability and residual oil data”, J. Can. Pet. Technol., 12, 53-61, 1973.
49. Van Geel, P. J., and J. F. Sykes, “Laboratory and Model Simulations of A Lnapl Spill in A Variably-Saturated Sand, 2. Comparison of Laboratory and Model Results”, Journal of Contaminant Hydrology, 17, 27-53, 1994.
50. van Genuchten, M. Th., “A closed form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Sci. Soc. of Am. J., 44, 892-898, 1980.
51. Williams, P.J. ”The Surface of the Earth,an introduction to geotechical science,”Longman Inc.,New York.,1982.
52. Wilson, J. L., S. H. Conrad, W. R. Mason, W. Peplinski and E. Hagen, “Laboratory investigation of residual liquid organics”, USEPA/600/6-90/004, Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma, 267pp, 1990.
53. Wilson, J. T., “The pore level spatial distribution and saturation of organic liquids in porous media”, Proc. NWWA Conf. on Petroleum Hydrocarbons and Organic Solvent in the Subsurface, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top