(3.238.173.209) 您好!臺灣時間:2021/05/16 21:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊泰益
研究生(外文):Tai-Yih Yang
論文名稱:多專案晶圓服務與晶圓代工廠及半導體設計產業供需互動模式之研究
論文名稱(外文):The Interactive Supply-Demand Model for Multi-Project Wafer Service with Foundry and Semiconductor Design Industry
指導教授:唐麗英唐麗英引用關係
指導教授(外文):Lee-Ing Tong
學位類別:博士
校院名稱:國立交通大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:中文
論文頁數:77
中文關鍵詞:多專案晶圓服務晶圓代工廠半導體設計產業模糊多評準決策模糊二階規劃
外文關鍵詞:Multi-project wafer servicefoundrysemiconductor design industryfuzzy multiple criteria decision modelfuzzy bilevel programming model
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1108
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多專案晶圓(Multi-Project Wafer;MPW)服務係針對同類型製程電路,整合許多不同客戶之設計,利用同一套光罩進行先期電路驗證。MPW服務不僅對於學術界設計人才之培育及設計產業之發展有顯著之貢獻,更由於光罩成本的分攤,能大幅降低光罩之驗証費用。
本論文首先分析台灣及大陸國家級之MPW機構在協助培育設計人才方面之現況,再針對能提供成熟製程之晶圓代工廠日增的趨勢,提出一套模糊多評準決策機制,以協助台灣或大陸國家級MPW機構於多家提供成熟製程之晶圓代工廠中,能快速有效地選出最適合之晶圓代工廠。
隨著半導體產業製程技術的進展,半導體設計產業亦面臨先進製程光罩成本驟增的挑戰。針對此問題,雖然透過現行晶圓代工廠所提供之MPW服務,經由光罩共享可大幅降低先進製程之光罩成本,但卻也會相對提高產品量產後之單位晶粒成本。本論文以0.13微米製程之光罩為例,提出一結合晶圓代工廠與MPW服務特色之小量生產模式,可協助設計產業根據晶粒設計面積及晶粒需求數量,以最低之光罩與晶粒成本,建立半導體設計產業最低成本之小量生產模式。
此外,由於共乘特性所衍伸服務時程之限制,凡參與現行MPW服務之設計專案,皆因此限制而造成一至三個月之共乘等待時間,本論文利用模糊二階規劃之方法,建立一套與設計產業客戶互動之交易機制,能同時兼顧設計產業客戶所要求之服務時效與MPW服務機構之光罩營收。
Multi-project wafer (MPW) service combines several integrated circuit (IC) designs from various customers who require similar technology process onto one mask set to verify the initial prototype. The MPW service not only has markedly slashed the prototyping expense by sharing the mask cost among several customers, but also has significantly contributed to efforts to cultivate qualified IC designers and enhance the development of the IC industry.
With the growth of foundry vendors for mature technologies in the semiconductor industry, this study first introduces the MPW institutes in Taiwan and China, then presents a fuzzy multiple criteria decision model to assist the MPW institutes to select the best foundry supplier.
As the process technology has advanced in the semiconductor industry, the IC design industry is facing the challenge of escalating mask costs. Although the mask cost can be markedly reduced by sharing the mask through MPW service provided by the foundries, the unit cost per die for small volume production is increasing. While combining the features of foundry and MPW service, this study presents a small volume production model considering the example of mask of 0.13um technology. The proposed model enables the IC design company to select the optimal combination of mask cost and unit die cost according to the die size and required dice quantity.
Furthermore, owing to the time constraint and the consequence of shared mask, one to three months waiting time is required prior to the MPW service of mask making. This study presents both a fuzzy bilevel programming model and a new business model which considers both scheduling efficiency and mask revenue of MPW service. These models allow the MPW institute to interact with IC design companies based on the mask cost and mask making schedule.
目 錄
第一章 緒 論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究方法 3
1.4 研究架構 4
第二章 文獻探討 5
2.1 MPW服務內容及特色 5
2.1.1 MPW服務之內容 5
2.1.2 MPW服務之特色 6
2.2 MPW機構介紹 7
2.2.1 非營利性質MPW機構 ─ 美國MOSIS 9
2.2.2 台灣「國家晶片系統設計中心」 9
2.2.3 大陸「上海集成電路設計研究中心」 10
2.2.4 晶圓代工廠之MPW服務 ─ 台積電CyberShuttle 11
2.3 製程進展對非營利機構與晶圓代工廠MPW服務未來發展之探討 12
2.3.1 半導體製程分類之定義 12
2.3.2 非營利機構於成熟製程MPW服務之優勢 13
2.3.3 晶圓代工廠於先進製程MPW服務之優勢 14
2.4 模糊多評準決策方法 15
2.4.1 層級分析法 16
2.4.2 模糊理論 18
2.4.3 模糊排序法 20
2.5 模糊多目標規劃 22
2.5.1 模糊多目標規劃之性質 22
2.5.2 二階規劃法 24
第三章 MPW機構評選晶圓代工廠決策機制之構建 28
3.1 MPW服務因製程供應商之演變對半導體產業發展之影響 28
3.2 MPW機構評選晶圓代工廠評估準則之建立 30
3.2.1 評估準則之調查方法 30
3.3 評估準則調查結果之分析 34
3.4 評估準則模糊權重的求取 38
3.5 晶圓代工廠模糊績效達成值之衡量 41
第四章 MPW服務與半導體設計產業交易機制之構建 46
4.1 現行MPW服務於先進製程交易模式之探討 46
4.1.1 半導體先進製程小量生產需求 46
4.1.2 晶圓代工廠現行MPW服務模式之限制 48
4.2 MPW光罩交易與定價模式 49
4.2.1 共用光罩交易模式 49
4.2.2 共用光罩訂價模式 50
4.3 MPW服務新增模式與現行模式之比較 52
4.3.1 設計產業依訂購數量決定小量生產模式 52
4.3.2 MPW新增模式與現行模式之成本比較 55
4.4 二階規劃法建構MPW服務與設計產業互動之交易機制 56
4.4.1 時效因素於MPW服務模式之探討 57
4.4.2 現行MPW服務模式於時效需求之限制 58
4.4.3 MPW小量生產提昇服務時效之營運模式 59
4.4.4 模糊二階線性規劃模式說明 61
4.5 實例說明 64
4.5.1 模式假設與共乘實例說明 65
4.5.2 問題求解過程說明 66
4.5.3 創新MPW模式與現行模式於價格及服務時效之比較 70
第五章 結論與建議 73
5.1 結論 73
5.2 未來發展方向 73
參考文獻 75
參考文獻
中文部份:
1. 姜祁峰、王曄,(2002),「上海多項目晶圓支持計劃現狀」,中國集成電路,第37期,64-66頁。
2. 徐樹滋,(1991),「線性二階規劃問題」,博士論文,國立清華大學工業工程研究所。
3. 施穎偉,(1999),「電子商務環境供應鏈供需互動模式之研究」,博士論文,國立政治大學資訊管理研究所。
4. 張國權,(2002),「上海多項目晶圓計劃歷史」,中國集成電路,第37期,62-63頁。
5. 張森琳,(1999),「油電動力混合式車輛發展策略之模糊多準則評估」,碩士論文,國立交通大學交通運輸研究所。
6. 黃安德,(1995),「線性二階規劃問題之塔布搜尋法」,博士論文,國立清華大學工業工程研究所。
7. 楊雅嵐,(2001),「台北市天然氣公車廠牌選擇之成本效益分析」,碩士論文,國立交通大學工業工程研究所。
8. 楊泰益、吳冠良,(2002),「台積公司CyberShuttle服務」,中國集成電路,第37期,74-76頁。
9. 鄧振源,曾國雄,(1989),「層級分析法(AHP)的內涵特性與應用(上),中國統計學報,第27卷,第6期,1307-13724頁。
10. 鄧振源,(1992),「相關性運輸投資計劃選擇之研究─非模糊與模糊多目標規劃方法」,博士論文,國立交通大學交通運輸研究所。
英文部份
1. Allan, A., Edenfeld, D., Joyner, W.H., Kahng, A.B., Rodgers, M., and Zorian, Y. (2002), “2001 Technology Roadmap for Semiconductors,” Computer, Vol. 35, No. 1, pp. 42-53.
2. Bellamn, R. E. and Zadeh, L. A. (1970), “Decision making in a fuzzy environment,” Management Science, Vol. 17, No. 4, pp. 141-164.
3. Benjamin, R. and Wigand, R. (1995), “Electronic Markets and Virtual Value Chains on the Information Superhighway,” Sloan Management Review, Winter, pp. 62-72.
4. Ben-Ayed, O., Boyce, D. E., and Blair, C. E. (1988), “A General Bilevel Linear Programming Formulation of Network Design Problem,” Transportation Research, Vol. 22B, No. 4, pp. 311-318.
5. Bortolan, G. and Degani, R. (1985), “A Review of Some Methods for Ranking Fuzzy Subsets,” Fuzzy Sets and Systems, Vol. 15, pp. 1-19.
6. Bracken, J., Falk, J. E., and Miercort, F. A. (1977), “A Strategic Weapons Exchange Allocation Model,” Operations Research, Vol. 25, No. 6, pp. 968-976.
7. Chen, S. H. (1985), “Ranking Fuzzy Numbers with Maximizing Set and Minimizing Set,” Fuzzy Sets and Systems, Vol. 17, pp. 113-130.
8. Chen, S. J. and Hwang, C. L. (1992), “Fuzzy multiple attribute decision making methods and applications,” Lecture Notes in Economics and Mathematical System, 1992.
9. Cheryl, A. (2000), “Field-programmable gate arrays aren''t just for prototyping anymore,” Electronic Design, Vol. 48, No. 8, pp. 71-82.
10. David, B. (2002), “We must hold the line on soaring ASIC design costs,” Electronic Design, Vol. 50, No. 21, pp. 22-22.
11. Dubois, D. and Prade, H. (1980), Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York.
12. Fortuny-Amat, J. and McCarl, B. (1981), “A Representation and Economic Interpretation of a Two-Level Programming Problem,” Journal of Operational Research Society, Vol. 32, pp. 783-792.
13. Jain, R. (1977), “Procedure for Multi-Aspect Decision Making Using Fuzzy Sets,” International Journal of Systems Sciences, Vol. 8, pp. 1-7.
14. Kim, K. and Park, K. S. (1990), “Ranking Fuzzy Numbers with Index of Optimism,” Fuzzy Sets and Systems, Vol. 35, pp. 143-150.
15. Kyland, F. (1975), “Hierarchical Decomposition in Linear Economic Model,” Management Science, Vol. 21, No. 9, pp. 1029-1039.
16. Leblance, L. J. and Boyce, D. E. (1986), “A Bilevel Programming Algorithm for Exact Solution of the Network Design Problem with User-Optimal Flows,” Transportation Research, Vol. 20B, pp. 259-265.
17. Lee, S. E. and Li, R. J. (1993), “Fuzzy Multiple Objective Programming and Compromise Programming with Pareto Optimum,” Fuzzy Sets and Systems, Vol. 53, No. 3, pp. 275-288.
18. Malone, T. W., Yates, J., and Benjamin, I. R. (1987), “Electronic Markets and Electronic Hierarchies,” Communication of the ACM, Vol. 30, No. 6, pp. 484-497.
19. Manners, G. E. Jr. (1975), Another Look at Group Size, Group Problem Solving and Member Consensus, Academy of Management Journal, Vol. 18, No. 4, pp. 715-724.
20. Marcotte, P. (1986), “Network Design Problem with Congestion Effects: A Case of Bilevel Programming,” Mathematical Programming, Vol. 34, pp. 142-162.
21. Moore, G. E. (1965), “Cramming More Components Onto Integrated Circuits,” Electronics Magazine, Vol. 38, No. 8, pp. 114-117.
22. Peltier, J. and Hansford, W. (1997), “Low Cost, Prototype ASIC and MCM Fabrication and Assembly from the MOSIS Service,” Microelectronic Systems Education, MSE 1997 Proceedings, 68 —69.
23. Porter, M. E. (1985), Competitive Advantage, Free Press, New York.
24. Saaty, T. L. (1980), The Analytic Hierarchy Process, New York: McGraw-Hill.
25. Sarkar, M. B., B. Butler, and C. Steinfield, (1995), “Intermediaries and Cybermediaries : A Continuing Role for Mediating Players in The Electronic Marketplace,” Journal of Computer-Mediated Communication, Vol. 1, No. 3.
26. Shih, H., Lai, Y., and Lee, E. S. (1996), “Fuzzy Approach for Multi-Level Programming Problems,” Computer Operations Research, Vol. 23, No. 1, pp. 73-91.
27. Slowinski, R. (1986), “A multicriteria fuzzy linear programming method for water supply system development planning,” Fuzzy Sets and Systems, Vol. 19, pp. 217-238.
28. Tanaka, H., Okuda, T., and Asai, K. (1974), “On fuzzy mathematical programming,” Journal of Cybernetics, Vol. 3, No. 4, pp. 37-46.
29. Wen, U. P. and Jiang, C. F. (1988), “A Multilevel Programming Approach in Commission Rate Setting Problem,” Journal of the Chinese Institute of Engineers, Vol. 5, No. 1, 91-97.
30. Wen, U. P. and Hsu, S. T. (1991), “Linear Bu-level Programming Problems,” Operation Research Society, Vol. 42, No. 2, pp. 125-133.
31. Wind, Y. and Saaty, T. L. (1980), “Marketing Applications of the Analytic Hierarchy Process,” Management Science, Vol. 26, No. 7, pp. 19-27.
32. Zadeh, L.A. (1965), “Fuzzy Sets,” Information and Control, Vol. 8, No. 3, pp. 338-353.
33. Zimmermann, H. J. (1978), “Fuzzy programming and linear programming with several objective functions,” Fuzzy Sets and Systems, Vol. 1, pp. 45-55.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top