(3.238.96.184) 您好!臺灣時間:2021/05/08 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:康鶴耀
研究生(外文):He-Yau Kang
論文名稱:晶圓製造廠控檔片存貨管理
論文名稱(外文):Control and Dummy Wafers Inventory Management for Wafer Fabrication Factory
指導教授:鍾淑馨鍾淑馨引用關係彭文理彭文理引用關係
指導教授(外文):Shu-Hsing ChungWen Lea Pearn
學位類別:博士
校院名稱:國立交通大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:69
中文關鍵詞:控檔片再回流降級安全存量非線性規劃
外文關鍵詞:control/dummy wafersre-entrantdowngradingsafety inventorynonlinear programming
相關次數:
  • 被引用被引用:2
  • 點閱點閱:301
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:100
  • 收藏至我的研究室書目清單書目收藏:0
本文探討晶圓製造廠控檔片的降級與安全存量兩種問題,其主要研究目的在於在相同的產出水準下,最小化控檔片之總成本。對於控檔片降級問題,在需求率固定與最小成本條件下,以線性規劃求出新片的供給率、再回流率、降級率。而對於控檔片的安全存量問題,在需求率服從常態分配與最小成本條件下,以非線性規劃求出新片的服務率與存貨水準。經由實例驗證,得知本文之控擋片存貨管理模式,在最小總成本目標下,能滿足生產系統控檔片消耗之需求。因此,在控檔片不允許缺貨的情況下,本文所設計之存量控制模式具有應用上之可行性與有效性。
This paper considers both control/dummy(C/D)wafers downgrading and safety inventory problems in wafer fabrication. The objective of the research is to minimize the total cost of C/D wafers, while maintaining the same level of production throughput. For the C/D wafers downgrading problem under constant demand rate, a linear programming model is presented to set the supply rate of new C/D wafers and the re-entrant and downgrading rates so as to minimize the cost of control wafers. For the safety inventory problem under a demand with approximate normal distribution, a nonlinear programming model is presented to set the service level and inventory level to minimize the cost of control wafers. Based on the objective function of minimizing total cost of C/D wafers, the service level derived by using the proposed model can meet the demand of the C/D wafers so that there will not be shortage of C/D wafers. Some numerical examples are given to illustrate the practicality of the C/D wafers inventory model. The results demonstrate that the proposed model is an effective tool for determining the C/D wafers downgrading policy.
Table of Contents
摘 要 i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
Table of Contents v
List of Figures viii
List of Tables x
Notation xii
1. Introduction 1
1.1. Motivation 1
1.2. Research Objectives 2
1.3. Organization 3
2. Literature Review 5
2.1. Linear Programming 5
2.2. Nonlinear Programming 6
2.3. Estimation of Cycle Time and Work-In-Process 8
2.4. Inventory Management 9
3. Background Information 12
3.1. Control Wafers Downgrading Problem (CWDP) 13
3.2. Control Wafers Safety Inventory Problem (CWSIP) 16
3.3. Control Wafers Work-In-Process Level Problem (CWWLP) 17
4. Linear Programming Approach 20
4.1. Problem Description and Assumptions 20
4.2. Optimization of Control Wafers Downgrading Problem (CWDP) 21
4.2.1. Control Wafers Demand of Grade j………… 22
4.2.2. Costs of Control Wafers for Each Grade…….. 23
4.2.3. Formulation of the Control Wafers Downgrading Problem…………………………………… 23
4.2.4. Strategy Discussion………………………… 25
4.3. Implementation of Control Wafers Downgrading Problem (CWDP) 26
4.3.1. Basic Input Information……………………. 27
4.3.2. Experimental Results and Analysis………… 29
5. Nonlinear Programming Approach 33
5.1. Problem Description and Assumptions 33
5.2. Optimization of Control Wafers Safety Inventory Problem (CWSIP) 34
5.2.1. Estimation of Demand Rate and Re-entrant Lead Time 36
5.2.2. Costs of Control Wafers for Each Grade…… 37
5.2.3. Formulation of the Control Wafers Safety Inventory Problem…………………………………… 37
5.2.4. Algorithm Procedures……………………… 39
5.3. Implementation of Control Wafers Safety Inventory Problem (CWSIP) 40
5.3.1. Basic Input Information……………………. 41
5.3.2. Experimental Result and Analysis…………. 41
6. Work-In-Process Level Estimation Algorithm 45
6.1. Optimization of Control Wafers Work-In-Process Level Problem (CWWLP) 45
6.1.1. Calculation of Downgrade and Re-entrant Ratios 46
6.1.2. Estimation of Cycle Time and WIP Level…. 47
6.1.3. Algorithm Procedures………………………… 50
6.2. Implementation of Control Wafers Work-In-Process level Problem (CWWLP) 50
6.2.1. Basic System Input……………………………. 50
6.2.2. Numerical Example……………………………… 51
6.2.3. Result Analysis………………………………….. 59
7. Conclusion and Future Research 61
7.1. Conclusion 61
7.2. Future Research 62
References 63
Appendix 66
Appendix A. Product Process Data 66
Appendix B. Workstation Data 69
References
[1] Azapagic, A. and Clift, A., Life cycle assessment and linear programming -environmental optimisation of product system. Computer and Chemical Engineering, 19(1), S229-S234, 1995.
[2] Anderson, D. R., Sweeney, D. J. and Williams, T. A., An Introduction to Management Science: Quantitative Approaches to Decision Making, Tenth Edition, South-Western Publishing Company, 2003.
[3] Bhunia, A. K. and Maiti, M., Deterministic inventory models for variable production. Journal of the Operational Research Society, 48(2), 221-224, 1997.
[4] Barahona, F. and Jensen, D., Plant location with minimum inventory. Mathematical Programming, 83(1), 101-111, 1998.
[5] Berman, O. and Sapna, K. P., Optimal control of service for facilities holding inventory. Computer and Operations Research, 28(5), 429-441, 2001.
[6] Bretthauer, K. M. and Shetty, B., A pegging algorithm for the nonlinear resource allocation problem. Computer and Operations Research, 29(5), 505-527, 2002.
[7] Covert, T. B. and Philip, G. S., An EOQ model with Weibull distribution deterioration. AIIIE Transactions, 5, 323-326, 1973.
[8] Chung, S. H. and H. W. Huang, The block-based cycle time estimation algorithm for wafer fabrication Factories. International Journal of Industrial Engineering, 6(4), 307-316, 1999.
[9] Chen, H. C. and Lee, C. E., Control and dummy wafers management. Journal of the Chinese Institute of Industrial Engineer, 17(4), 437-449, 2000.
[10] Chang, H. J. and Dye, C. Y., An EOQ model with deteriorating items in response to a temporary sale price. Production Planning and Control, 11(5), 464-473, 2000.
[11] Chung, K. J. and Tsai, S. F., Inventory systems for deteriorating items with shortages and a linear trend in demand-taking account of time value. Computer and Operations Research, 28 (9), 915-934, 2001.
[12] Chang, H. J., Hung, C. H. and Dye, C. Y., A finite time horizon inventory model with deterioration and time-value of money under the conditions of permissible delay in payments. International Journal of Systems Science, 33 (2), 141-151, 2002.
[13] Das, K., Roy, T. K. and Maiti, M., Multi-item inventory model with quantity-dependent inventory costs and demand-dependent unit cost under imprecise objective and restrictions: a geometric programming approach. Production Planning and Control, 11(8), 781-788, 2000.
[14] Fujiwara, O. and Sedarage, D., An optimal (Q, r) policy for a multipart assembly system under stochastic part procurement lead times. Computer and Operations Research, 100(3), 550-556, 1997.
[15] Ghare, P. M. and Scharader, G. H., A model for exponentially decaying inventory system. International Journal of Production Research, 21, 449-460, 1963.
[16] Glynn, P. M. and O’Dea, M., How to get predictable throughput times in a multiple product environment. IEEE International Symposium, 27-30, 1997.
[17] Hafsi, M. and Bai, S. X., Multiperiod production planning with demand and cost fluctuation. Mathematical and Computer Modelling, 28(3), 103-119, 1998.
[18] Hiller, F. S. and Lieberman, G. J., Introduction to Operations Research, Seventh Edition, McGRAW-HILL Publishing Company, 2001.
[19] Jackson, J. R., Jobshop-Like queueing systems. Management Science, 10(1):131-142, 1963.
[20] Kleinrock, L., Queueing System, John Willey and Sons Publishing Company, 1975.
[21] Kroese, D. P., and Nicola, V. F., Efficient simulation of a tandem jackson network. Proceedings of the 1999 Winter Simulation Conference, 411-419, 1999.
[22] Kar, S., Bhunia, A. K. and Maiti, M., Deterministic inventory model with two levels of storage, a linear trend in demand and a fixed time horizon. Computer and Operations Research, 28 (13), 1315-1331, 2001.
[23] Kumar, S. and Kumar, P. R., Queueing network models in the design and analysis of semiconductor wafer fabs. IEEE Transactions on Robotics and Automation, 17(5), 548-561, 2001.
[24] Lawrence, S. R., Estimating flowtimes and setting due-dates in complex production systems. IIE Transactions, 657-668, 1995
[25] Lin, Y. L., The design of inventory control model for dummy/control wafers at the furnace area in the wafer fabrication. Master Thesis, National Chiao Tung University, Hsin-Chu, Taiwan, 2000.
[26] Pal, S., Goswami, A. and Chaudhuri, K. S., A deterministic inventory model for deteriorating items with stock-dependent demand rate. International Journal of production Economics, 32(3), 291-299, 1993.
[27] Popovich, S. B., Chilton, S. R. and Kilgore, B., Implementation of a test wafer Inventory tracking system to increase efficiency in monitor wafer usage. 1997 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 440-443, 1997.
[28] Platt, D. E., Robinson, L. W. and Freund, R. B., Tractable (Q, R) heuristic models for constrained service levels. Management Science, 43(7), 951-965, 1997.
[29] Raddon, A. and Grigsby, B., Throughput time forecasting model. 1997 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 430-433, 1997.
[30] Roy, T. K. and Maiti, M., Multi-objective inventory models of deteriorating items with some constraints in a fuzzy environment. Computer and Operation Research, 25(12), 1085-1095, 1998.
[31] Spearman, M. L. and Woodurff, D. L., CONWIP: A pull alternative to kanban. International Journal of Production Research, 28(5), 879-894, 1990.
[32] Taha, H. A., Operations Research an Introduction, Sixth Edition, Prentice-Hall Publishing Company, 1997.
[33] Vargas-Villamil, F. D. and Rivera, D. E., A model predictive control approach for real-time optimization of reentrant manufacturing lines. Computers in Industry, 45(1), 45-57, 2001.
[34] Winston, W. L., Operations Research: Applications and Algorithms, Third Edition, Wadsworth Publishing Company, 1994.
[35] Wee, H. M., Joint pricing and replenishment policy for deteriorating inventory with declining market. International Journal of production Economics, 40(2), 163-171, 1995.
[36] Wang, T. H., Lin, K. C. and Huang, S. R., Method of dynamically determining cycle time of a working stage. 1997 IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 403-407, 1997.
[37] Xiao, H. Introduction to Semiconductor Manufacturing Technology, Prentice-Hall Publishing Company, 2001.
[38] Yokoyama, M., Integrated optimization of inventory-distribution systems by random local search and a genetic algorithm. Computers and Industrial Engineering, 42, 175-188,2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔