(3.238.130.97) 您好!臺灣時間:2021/05/10 12:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐偉成
研究生(外文):Wei-Cheng Hsu
論文名稱:高能量離子佈植導致之晶格缺陷對於極大型積體電路特性影響之研究
論文名稱(外文):High Energy Ion implantation Induced Defects Relevant to ULSI Applications
指導教授:陳茂傑
指導教授(外文):Mao-Chieh Chen
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:中文
論文頁數:118
中文關鍵詞:高能量離子佈植優先性化學蝕刻差排缺陷少數載子生命期暫態增強擴散現象
相關次數:
  • 被引用被引用:0
  • 點閱點閱:377
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究高能量離子佈植所導致之晶格缺陷對於極大型積體電路應用上之影響。首先,我們研究一種優先性(preferential)化學蝕刻方法,可以用來偵測與顯現高能量硼離子植入矽晶片後,經過高溫氮氣快速退火處理後所殘餘之二次缺陷。其次,用這個方法來觀察多重高能量離子佈植所形成之具有底部掩埋層之倒退式離子佈植井結構,經過退火處理後矽晶內部之延伸缺陷。本論文接著探討退火熱處理對於高能量硼離子佈植所導致之晶格缺陷的影響。再者,本論文對三重井(Triple Well)結構的離子佈植後續退火熱處理對於閘極氧化層的崩潰電壓效應加以探討。最後,本論文探討在三重井結構中的硼原子與銻原子的暫態增強擴散現象(TED)。
首先,在偵測高能量硼離子佈植所導致之晶格缺陷方面,我們研究一種優先性(preferential)化學蝕刻方法,可以用來偵測和顯現高能量硼離子植入矽晶片後,經過後續高溫氮氣快速退火處理後所殘餘之二次缺陷。這種優先性化學蝕刻液係由三氧化鉻與氫氟酸組成的混合劑,可以清楚地顯現出矽晶片裡的差排缺陷,並且由蝕刻後之晶片橫截面電子顯微鏡照片,可以觀察到相應於差排缺陷分佈區域的條紋帶。植入矽晶片之硼離子能量為0.5到2 MeV,劑量為3×1014 cm-2,所偵測出的缺陷密度為6×106 cm-2。再者,我們發現晶片橫截面的缺陷刻痕縱深分佈與離子佈植導致的損傷分佈具有直接的密切關連性。
其次,我們運用上述的優先性化學蝕刻法,來觀察多重高能量離子佈植所形成之具有底部掩埋層之倒退式離子佈植井結構,在950℃作30分鐘氮氣退火處理後的矽晶內部之延伸缺陷。我們發現,由能量1.5 MeV、劑量3×1013 cm-2的硼離子佈植形成掩埋層時,離子佈植導致產生在投射範圍末端的差排缺陷會在後續的退火處理過程中,向晶片表面延伸,其所呈現的缺陷蝕刻痕密度將近1×106 cm-2。延伸至矽晶表面的缺陷有可能對閘極氧化層及p-n接面元件特性造成不利的影響。
對於高能量(1.5 MeV)硼離子植入矽晶片,針對不同劑量(1.1×1013及5×1013 cm-2)和退火處理方式(快速退火處理及爐管退火處理)的研究方面,我們發現經過較高劑量植入的矽晶片,其少數載子生命期的劣化較為嚴重,而且退火處理對於少數載子生命期的復原也比較有限,可能與較高劑量硼離子佈植(超過2×1013 cm-2之門檻劑量)導致的差排缺陷有關。再者,快速退火處理比爐管退火處理具有較佳的能力於減少離子佈植導致之間隙原子,因此對於劣化之少數載子生命期的復原效果較佳。
在三重井(Triple Well)結構的離子佈植後續退火熱處理對於閘極氧化層崩潰電壓的研究方面,我們發現在MeV級高能量離子佈植過的矽晶片上,未經過後續退火熱處理所成長的薄氧化層,比較容易含有孔洞,導致一些金氧半(MOS)結構氧化層的崩潰電壓非常低;此外,該氧化層亦具有較高密度的介面態,導致氧化層的一般性崩潰電壓偏低。如果,在成長氧化層之前,經過適當的後續退火熱處理,例如1000℃、30分鐘的退火處理,則所得薄氧化層的崩潰電壓可以改善至相當完美的程度。
最後,本論文亦對三重井結構中的硼原子與銻原子的暫態增強擴散效應(TED),以soak與spike兩種快速退火處理加以探討。實驗結果顯示,銻原子未有明顯的暫態增強擴散效應,然而,硼原子的暫態增強擴散效應不僅出現在三重井結構中,而且也在未經過MeV級高能量離子佈植的控制試片中發現。由於硼離子的暫態增強擴散現象是由矽晶片內部的間隙原子所導致,因此硼原子的暫態增強擴散現象應該可以用spike快速退火處理而大幅減少。
Contents
Abstract (Chinese) -------------------------------------------------------------------------i
Abstract (English) ------------------------------------------------------------------------iv
Table Captions-----------------------------------------------------------------------------vii
Figure Captions --------------------------------------------------------------------------viii
Chapter 1 Introduction-----------------------------------------------------------1
1.1 General Background-------------------------------------------------------1
1.2 The Well Controversy in CMOS-----------------------------------------3
1.3 Retrograde Well with a Buried Layer -----------------------------------4
1.4 Triple Well -----------------------------------------------------------------5
1.5 Motivation ------------------------------------------------------------------6
1.6 Thesis Organization -------------------------------------------------------7
References -----------------------------------------------------------------------9
Chapter 2 Detection of the Defects Induced by Boron High-Energy
Ion Implantation of Silicon --------------------------------------------20
2.1 Introduction ---------------------------------------------------------------20
2.2 Experimental Details -----------------------------------------------------22
2.3 Experimental Results-----------------------------------------------------23
2.4 The Mechanism of Chemical Etching of CrO3/HF ------------------25
2.5 The Relationship between the Etching Pits with the Defects -------26
2.6 Summary ------------------------------------------------------------------28
References ---------------------------------------------------------------------29
Chapter 3 Implantation Induced Defects in the Retrograde Well
with a Buried Layer -----------------------------------------------41
3.1 Introduction ---------------------------------------------------------------41
3.2 Experimental Details ----------------------------------------------------42
3.3 Retrograde p-well with/without Buried Layer ------------------------44
3.4 Retrograde n-well with/without Buried Layer ------------------------47
3.5 Summary -------------------------------------------------------------------51
References ---------------------------------------------------------------------52
Chapter 4 Annealing Effect on the Boron High Energy Ion
Implantation Induced Defects ---------------------------------63
4.1 Introduction ---------------------------------------------------------------63
4.2 Experimental Details-----------------------------------------------------64
4.3 Meausrement of Minority carrier generation lifetime ---------------66
4.4 Preferential Etching -----------------------------------------------------67
4.5 Summary ------------------------------------------------------------------71
References ---------------------------------------------------------------------72
Chapter 5 Post-Implantation Thermal Annealing Effects on
the Gate Oxide of Triple-Well-Structure --------------------78
5.1 Introduction -----------------------------------------------------------------78
5.2 Experimental Details ----------------------------------------------------------79
5.3 Breakdown Voltage of Gate Oxides ------------------------------------81
5.4 Stress-Induced Leakage Current (SILC) -------------------------------82
5.5 Interface State Density-----------------------------------------------------83
5.6 Summary --------------------------------------------------------------------86
References -----------------------------------------------------------------------87
Chapter 6 Transient Enhanced Diffusion for Source/Drain Extension
in the Triple-Well-Structure------------------------------------93
6.1 Introduction -----------------------------------------------------------------93
6.2 Experimental Details ------------------------------------------------------94
6.3 Diffusion of Antimony ----------------------------------------------------96
6.4 Transient Enhanced Diffusion of Boron---------------------------------97
6.5 Summary -------------------------------------------------------------------101
References ----------------------------------------------------------------------102
Chapter 7 Conclusions and Suggestions for Future Work --------------112
7.1 Conclusions----------------------------------------------------------------112
7.2 Suggestions of Future Work --------------------------------------------114
簡歷 -------------------------------------------------------------------------------117
Publication-----------------------------------------------------------------------118
[1] S.Wolf, Silicon processing for the VLSI era, Vol. 2, Lattice press, California, U.S.A., (1990), p.368.
[2] J.Y.Chen, CMOS Devices and Technology for VLSI, Prentice-Hall, New Jersey, U.S.A., (1990), p.1.
[3] S.Wolf, Silicon processing for the VLSI era, Vol. 3, Lattice press, California, U.S.A., (1995), p.523.
[4] L.C.Parrillo, R.S.Payne, R.E.Davis, G.W.Reutlinger, and R.L.Field, IEDM Technical Digest (1980), p.752.
[5] J.Agraz-Guerena, R.A.Ashton, W.J.Bertram, R.C.Melin, R.C.Sun, and J.T.Clemens, IEDM Technical Digest (1984), p.63.
[6] S.R.Combs, IEDM Technical Digest (1981), p.346.
[7] R.D.Rung, C.J.Dell’oca, and L.G.Walker, IEEE Trans. Electron Devices, ED-28, 1116 (1981).
[8] K.W.Terrill, P.F.Byrne, H.P.Zappe, N.W.Cheung, and C.Hu, IEDM Technical Digest (1984), p.406.
[9] Y.Taur, W.H.Chang, and R.H.Dennard, IEDM Technical Digest (1984), p.398.
[10] K.W.Terrill, P.F.Byrne, H.P.Zappe, N.W.Cheung, and C.Hu, IEDM Technical Digest (1984), p.406.
[11] U.Schwabe, E.P.Jacobs, D.Takacs, J.Winnerl, E.Lange, IEDM Technical Digest (1984), p.410.
[12] Y.Taur, G.J.Hu, R.H.Dennard, L.M.Terman, C.Y.Ting, and K.E.Petrillo, IEEE Trans. Electron Devices, ED-32, 203 (1985).
[13] M.I.Current, and R.A.Martin, Proceedings of SPIE, 530, 23 (1985).
[14] M.I.Current, R.A.Martin, K.Doganis and R.H.Bruce, Semiconductor International, (June, 1985), p.106.
[15] R.A.Martin, A.G.Lewis, T.Y.Huang and J.Y.T.Chen, IEDM Technical Digest (1986), p.403.
[16] R.A.Martin and J.Y.T.Chen, IEEE J. Solid-State Circuits, SC-21, 286 (1986).
[17] H.P.Zappe and C.Hu, Nuclear Instruments and Methods in Physics Research, B21, 163 (1987).
[18] A.G.Lewis, R.A.Martin, T.Y.Huang, J.Y.Chen, and M.Koyanagi, IEEE Trans. Electron Devices, ED-34, 203 (1987).
[19] N.Yamauchi, IEEE Trans. Electron Devices, ED-34, 2562 (1987).
[20] H.P.Zappe and C.Hu, IEEE Trans. Electron Devices, ED-35, 1029 (1988).
[21] S.Odanaka, T.Yabu, N.Shimizu, H.Umimoto, and T.Ohzone, IEEE Electron Device Letters, EDL-10, 280 (1989).
[22] Y.Akasaka, Nuclear Instruments and Methods in Physics Research, B37/38, 9 (1989).
[23] T.Kishimoto, M.Takai, Y.Ohno, T.Nishimura, M.Inuishi, A.Kinomura, Y.Horino, and K.Fujii, Nuclear Instruments and Methods in Physics Research, B130, 524 (1997).
[24] K.Ohyu, T.Suzuki, T.Yamanaka, and N.Natsuaki, Nuclear Instruments and Methods in Physics Research, B37/38, 749 (1989).
[25] H.Y.Lin and C.H.Ting, Nuclear Instruments and Methods in Physics Research, B37/38, 960 (1989).
[26] Y.Okazaki, T.Kobayashi, M.Miyake, T.Matsuda, K.Sakuma, Y.Kawai, M.Takahashi, and K.Kanisawa, IEEE Electron Device Letters, EDL-11, 134 (1990).
[27] S.Odanaka, T.Yabu, N.Shimizu, H.Umimoto, and T.Ohzone, IEEE Trans. Electron Devices, ED-37, 1735 (1990).
[28] K.Tsukamoto, S.Komori, T.Kuroi, and Y.Akasaka, Nuclear Instruments and Methods in Physics Research, B59/60, 584 (1991).
[29] K.Tsukamoto, T.Kuroi, S.Komori, and Y.Akasaka, Solid State Technology, (June, 1992), p.49.
[30] S.Voldman, M.Marceau, A.Baker, E.Adler, S.Geissler, J.Slinkman, J.Johnson, and M.Paggl, IEDM Technical Digest (1992), p.811.
[31] J.O.Borland and R.Koelsch, Solid State Technology, (December, 1993), p.28.
[32] B.J.Sealy and P.L.F.Hemment, Nuclear Instruments and Methods in Physics Research, B89, 298 (1994).
[33] S.H.Voldman, IEEE Circuits & Devices Magazine, 11, 8 (1995).
[34] S.Bogen, K.Körber, L.Gong, L.Frey, and H.Ryssel, Nuclear Instruments and Methods in Physics Research, B96, 411 (1995).
[35] D.C.Jacobson, A.Kamgar, D.J.Eaglesham, E.J.Lloyd, S.J.Hillenius, and J.M.Poate, Nuclear Instruments and Methods in Physics Research, B96, 416 (1995).
[36] L.Rubin, and W.Morris, Semiconductor International, (April, 1997), p.77.
[37] J.K.Kim, S.H.Park, Y.J.Lee, and, Y.K.Sung, Proceedings of 1997 Annual International Reliability Physics Symposium, New York, USA (1997), p.346.
[38] W.Morris, L.Rubin, and D.Wristers, Proceedings of 1997 International Conference on Ion Implantation Technology, New York, USA (1997), p.796.
[39] Y.T.Jang, T.H.Huh and J.S.Ro, Proceedings of 1998 International Conference on Ion Implantation Technology, Piscataway, NJ, USA (1998), p.959.
[40] J.O.Borland, H.T.Cho, and J.K.Kim, Proceedings of 1998 International Conference on Ion Implantation Technology, Piscataway, NJ, USA (1998), p.67.
[41] S.Fujii, M.Oogihara, M.Shimizu, M.Yoshida, K.Numata, T.Hara, S.Watanabe, S.Sawada, T.Mizuno, J.Kumagai, S.Yoshikawa, S.Kaki, Y.Saito, H.Aochi, T.Hamamoto, and K.Toita, IEEE J. Solid-State Circuits, 24, 1170 (1989).
[42] A.Umezawa, S.Atsumi, M.Kuriyama, H.Banba, K.Imamiya, K.Naruke, S.Yamada, E.Obi, M.Oshikiri, T.Suzuki, and S.Tanaka, IEEE J. Solid State Circuits, 27, 1540 (1992).
[43] T.Jinbo, H.Nakata, K.Hashimoto, T.Watanabe, K.Ninomiya, T.Urai, M.Koike, T.Sato, N.Kodama, K.Oyama, and T.Okazawa, IEEE J. Solid State Circuits, 27, 1547 (1992).
[44] J.O.Borland, Proceedings of 1997 International Conference on Ion Implantation Technology, New York, USA (1997), p.17.
[45] W.Muth, IEDM Technical Digest (1992), p.262.
[46] J.O.Borland, Semiconductor International, (April, 1998), p.67.
[47] K.K.Bourdelle, S.Chaudhry, and J.Chu, IEEE Trans. Electron Devices, 48, 521 (2001).
[48] K.K.Bourdelle, Y.Chen, R.A.Ashton, L.M.Rubin, A.Agarwal, and W.H.Morris, IEEE Trans. Electron Devices, 48, 2043 (2001).
[49] J.Y.Cheng, D.J.Eaglesham, D.C.Jacobson, P.A.Stolk, J.L.Benton, and J.M.Poate, Journal of Applied Physics, 80, 2105 (1996).
[50] M.Tamura, N.Natsuaki, Y.Wada, and E.Mitani, Nuclear Instruments and Methods in Physics Research, B21, 438 (1987).
[51] R.Pech, D.Huber, J.Brunner, L.Rubin, Y.Erokhin, K.Funk, W.Morris, and M.Stutzmann, Proceedings of 1998 International Conference on Ion Implantation Technology, Piscataway, NJ, USA (1998), p.756.
[52] H.Sayama, A.Kinomura, Y.Yuba and M.Takai, Nuclear Instruments and Methods in Physics Research, B80/81, 587 (1993).
[53] E.Chanson, S.T.Picraux, J.M.Poate, J.O.Borland, M.I.Current, T.Diaz de la Rubia, D.J.Eaglesham, O.W.Holland, M.E.Law, C.W.Magee, J.W.Mayer, J.Melngailis, and A.F.Tasch, Journal of Applied Physics, 81(10), 6513 (1997).
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔