(3.238.173.209) 您好!臺灣時間:2021/05/16 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊明誼
研究生(外文):Ming Yi Yang
論文名稱:高介電常數介電質射頻金氧金電容之研究
論文名稱(外文):The research of Radio-Frequency Metal-Insulator-Metal capacitor using high-k as dielectrics
指導教授:荊鳳德
指導教授(外文):Albert Chin
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:112
中文關鍵詞:介電常數介電質射頻金氧金氧化鋁氧化鉭氧化鑭
外文關鍵詞:dielectric constantdielectricradio frequencyMIMAluminum oxideTantalum oxideLanthanum oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
隨著超大型積體電路技術的不斷發展、元件尺寸的不斷縮微,為配合現今無線通訊不斷的發展,射頻金氧半場效電晶體的截止頻率與元件大小都必須不斷地改善。然而,因為無法微縮的被動射頻元件通常比主動元件場效電晶體佔據更大的面積,致使射頻電路的晶片尺寸及成本一直無法有效的下降。在各種不同的被動元件中,金氧金電容經常被廣泛的應用在射頻電路裡的阻抗匹配與直流濾波器中﹔而且它們通常佔據了很大比例的電路面積。因此,為了有效降低晶片的面積與成本,提高單位面積的電容值是極為需要的。
藉由減低電容的厚度以及使用高介電常數的金屬氧化物,可以提高電容密度。然而,因為減低電容的厚度會增加不必要的漏電流以及其他缺點,所以使用高介電常數的介電層是比較好的解決方法。我們已經發展出一種沉積介電質的方法,先利用物理氣相沉積的方式蒸鍍金屬薄膜,再將其氧化與退火,藉此以成長出高品質的高介電常數金屬氧化層。將此薄膜應用在被動元件中,以製造出可量測高頻特性的金氧金電容。
除了基礎的漏電流與低頻量測以外,我們另外量測了射頻電容的高頻散射參數。並運用數學模擬軟體,淬取出元件在不同頻率所具有的電容大小,另外我們更發展出一種數學推導方式,經由散射參數成功了計算出射頻電容元件在高頻工作時的電壓相關電容變化係數。除了電容密度高達17fF/m2以外,此電容還擁有低電壓相關電容變化係數、低溫度相關電容變化係數、高品質因素等優點。我們憑藉優良的技術成長出高品質的高介電常數氧化鋁鉭及氧化鑭射頻電容,並利用嶄新的數學計算,研究其在低頻與射頻範圍的工作特性。由於可以準確的計算射頻電容元件在高頻的各種工作性質,藉此將有助於高介電常數介電層射頻電容在未來的高頻電路中的使用。最後我們另外研究電壓相關變化係數對不同材料(不同等效厚度)以及電壓相關變化係數對不同頻率下的關係。這對預測將來使用不同高介電常數介電層材料作為高頻被動元件電容,將會有很大的幫助。

As the very large scale integration (VLSI) technology continues to be scaled down, both the cut-off frequency fT and the device size of radio frequency (RF) metal-oxide-semiconductor field-effect transistors (MOSFETs) are improved, allowing them to be used in wireless communication. However, the chip size and cost of RF circuits cannot be greatly scaled down because non-scaled passive RF devices usually occupy a larger area than active MOSFETs. Among various passive devices, metal-insulator-metal (MIM) capacitors are widely used in RF circuits for impedance matching and direct current (DC) filtering; they occupy a large fraction of circuit area. Hence, a higher capacitance per unit area is required to reduce size and cost.
Since the capacitance density of a MIM capacitor equals e0k/td, the use of a metal-oxide with a high dielectric constant (k) and the reduction of the thickness of the dielectric (td) are methods for increasing the capacitance density. However, the use of a high-k dielectric is preferred because reducing td exponentially increases the capacitor leakage current density and the loss-tangent due to electron tunneling. Hence, we have developed a new approach to deposit high-k dielectrics. We deposited the thin metal film using PVD followed by oxidation and annealing. Using this method, we can deposit different high-k dielectric, such as high-k Al2O3, AlTaOx, and La2O3. Then we use fabricate the Radio-Frequency Metal-Insulator-Metal capacitor using these high-k as dielectric which can measure the characteristics of the capacitor at radio frequency regime.
Beside the measurement of leakage current density and capacitance at low frequency, we also measured the S-parameters to investigate the characteristics of the RF MIM capacitor at RF regime. Using the simulation software, the capacitance of the device at different frequencies was extracted. We also develop a new mathematics method to derive the voltage-dependent capacitance coefficient (VCC) at RF frequency regime. Thedielectric provide the special advantage such as: a higher-k than other high-kdielectrics; low voltage-dependent capacitance change (delta C/C) with a small value ~100 ppm as the frequency is increased into the gigahertz regime; low temperature-dependent capacitance coefficient (TCC); and high Q-factor. Finally, we investigate the dependence between VCC/TCC and frequency/effective oxide thickness, these research will help on predicting the characteristics of RF MIM capacitor using other material as dielectric at different frequency.

Contents
Abstract (in Chinese)…………… i
Abstract (in English) ………… iii
Acknowledgement…………………… v
Contents…………………………… vi
Figure Captions………………… viii
Chapter 1
Introduction
1.1 Motivation to Study High-k Dielectrics… 1
1.2 Background of High-k Dielectrics………… 3
1.3 The Deposition of High-k Dielectrics…… 8
1.4 The Measurement of the Devices…………… 11
1.5 The Application of High-k Dielectrics……11
1.6 Innovation and Contribution…………………15
Chapter 2
High Density MIM Capacitors Using AlTaOx Dielectrics
2.1 Introduction……………………… 20
2.2 Experimental……………………… 21
2.3 Results and discussion………… 22
2.4 Conclusion………………………… 24
Chapter 3
Very High Density MIM Capacitors (17fF/um2) Using High-k Al2O3 Doped Ta2O5 Dielectrics
3.1 Introduction……………………… 32
3.2 Experimental……………………… 33
3.3 Results and discussion………… 34
3.4 Conclusion………………………… 36
Chapter 4
High-Density Radio-Frequency Metal-Insulator-Metal capacitors using High-k La2O3 dielectrics
4.1 Introduction………………………… 43
4.2 Experimental………………………… 44
4.3 Results and discussion…………… 45
4.4 Conclusion…………………………… 50
Chapter 5
The Dependence of VCC/TCC and frequency on high-density RF MIM capacitors using High-k Al2O3 doped Ta2O5 dielectrics
5.1 Introduction………………………… 60
5.2 Experimental………………………… 61
5.3 Results and discussion…………… 62
5.4 Conclusion…………………………… 66
Chapter 6
Conclusions………………… 72
References…………………… 74
Vita…………………………… 99
Publication Lists……………100

References
Chapter 1:
[1.1] International Technology Roadmap for Semiconductor, 2003, RF and AMS Technologies for Wireless Communications pp. 7.
[1.2] International Technology Roadmap for Semiconductor, 2003, RF and AMS Technologies for Wireless Communications pp. 11
[1.3] Wang Bin, J. S. Suehle, E. M. Vogel and J. B. Bernstein, ”Time-dependent breakdown of ultra-thin SiO2 gate dielectrics under pulsed biased stress,” IEEE Electron Device Lett., 22, pp. 224-226, 2001.
[1.4] J. H. Stathis, A. Vayshenker, P. R. Varekamp, E. Y. Wu, C. Montrose, J. McKenna, D. J. DiMaria, L. -K. Han, E. Cartier, R. A. Wachnik and B. P. Linder, “Breakdown measurements of ultra-thin SiO2 at low voltage,” in IEDM Tech. Dig., 2000, pp. 94-95.
[1.5] M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C. Hongo and A. Nishiyama, “Thermally stable ultra-thin nitrogen incorporated ZrO2 gate dielectric prepared by low temperature oxidation of ZrN,” in IEDM Tech. Dig., 2001, pp. 20.3.1-20.3.4.
[1.6] E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. Gribelyuk, H. Okorn-Schmidt, C. D Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L. -A. Ragnarsson and Rons, “Ultrathin high-K gate stacks for advanced CMOS devices,” in IEDM Tech. Dig., 2001, pp. 20.1.1-20.1.4.
[1.7] S. Song, J. H. Yi, W. S. Kim, J. S. Lee, K. Fujihara, H. K. Kang, J. T. Moon and M. Y. Lee, “CMOS device scaling beyond 100 nm,” in IEDM Tech. Dig., 2000, pp. 235-238.
[1.8] M. Houssa, M. Naili, V. V. Afanas'ev, M. M. Heyns and A. Stesmans, ” Electrical and physical characterization of high-k dielectric layers,” in Symp. on VLSI Technology, 2001, pp. 196-199.
[1.9] J. H. Stathis and D. J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage,” in IEDM Tech. Dig., 1998, pp. 167-170.
[1.10] R. Degraeve, N. Pangon, B. Kaczer, T. Nigam, G. Groeseneken and A. Naem, ”Temperature acceleration of oxide breakdown and its impact on ultra-thin gate oxide reliability,” in Symp. on VLSI Technology, 1999, pp. 59-60.
[1.11] R. B. van Dover, R. M. Fleming, L. F. Schneemeyer, G. B. Alers and D. J. Werder, ”Advanced dielectrics for gate oxide, DRAM and RF capacitors,” in IEDM Tech. Dig., 1998, pp. 823-826.
[1.12] T. P. Ma, ”High-k gate dielectrics for scaled CMOS technology,” in Solid-State and Integrated-Circuit Technology, 2001, pp. 297-02.
[1.13] S. A. Campbell, D. C. Gilmer, Wang Xiao-Chuan, Hsieh Ming-Ta, Hyeon-Seag Kim, W. L. Gladfelter and Jinhua Yan, ”MOSFET transistors fabricated with high permitivity TiO2 dielectrics,” IEEE Electron Device Lett., 22, pp. 104-109, 1997.
[1.14] C. Hobbs, R. Hegde, B. Maiti, H. Tseng, D. Gilmer, P. Tobin, O. Adetutu, F. Huang, D. Weddington, R. Nagabushnam, D. O'Meara, K. Reid, L. La, L. Grove and M. Rossow, ”Sub-quarter micron CMOS process for TiN-gate MOSFETs with TiO2 gate dielectric formed by titanium oxidation,” in Symp. on VLSI Technology, 1999, pp. 133-134.
[1.15] Kee-Won Kwon, Chang-Seok Kang, Soon Oh Park, Ho-Kyu Kang and Sung Tae Ahn, ”Thermally robust Ta2O5 capacitor for the 256-Mbit DRAM,” IEEE Electron Device Lett., 43, pp. 919-923, 1996.
[1.16] Kwang Ming Lin, CheeYee Kwok and Ruey Shing Huang, “An integrated thermo-capacitive type MOS flow sensor,” IEEE Electron Device Lett., 17, pp. 247-249, 1996.
[1.17] E. Dusinski, J. Szmidt, K. Zdunek, M. Elert and A. Barcz, “Titanium oxide produced by plasma technology for MOS structures,” Wide Bandgap Layers, pp. 206-207, 2001.
[1.18] Ma Tiezhong, S. A. Campbell, R. Smith, N. Hoilien, He Boyong, W. L. Gladfelter, C. Hobbs, D. Buchanan, C. Taylor, M. Gribelyuk, M. Tiner, M. Coppel and Lee Jang Jung, ”Group IVB metal oxides high permittivity gate insulators deposited from anhydrous metal nitrates,” IEEE Electron Device Lett., 48, pp. 2348-2356, 2001.
[1.19] H. -J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, E. Dharmarajan and J.C. Lee, ”Novel nitrogen profile engineering for improved TaN/HfO2 Si MOSFET performance,” in IEDM Tech. Dig., 2001, pp. 30.2.1-30.2.4.
[1.20] Y. Abe, T. Oishi, K. Shiozawa, Y. Tokuda and S. Satoh, ”Simulation study on comparison between metal gate and polysilicon gate for sub-quarter-micron MOSFETs,” IEEE Electron Device Lett., 20, pp. 632-634, 1999.
[1.21] K. Onishi, Chang Seok Kang, Rino Choi, Hag-Ju Cho, S. Gopalan, R.. Nieh, E. Dharmarajan and J. C. Lee, ”Reliability characteristics, including NBTI, of polysilicon gate HfO2 MOSFET's,” in IEDM Tech. Dig., 2001, pp. 30.3.1-30.3.4.
[1.22] L. Manchanda, B. Busch, M. L. Green, M. Morris, R. B. van Dover, R. Kwo and S. Aravamudhan, ”High K gate dielectrics for the silicon industry,” in Gate Insulator, 2001, pp. 56-60.
[1.23] G. Wilk, R. M. Wallace and J. M. Anthony, “Hafnium and Zirconium Silicates for advanced gate dielectrics,” J. Applied Physics, 87, pp. 484-492, 2000.
[1.24] W. Zhu, T. P. Ma, T. Tamagawa, Y. Di, J. Kim, R. Carruthers, M. Gibson and T. Furukawa, ”HfO2 and HfAlO for CMOS: thermal stability and current transport,” in IEDM Tech. Dig., 2001, pp. 20.4.1-20.4.4.
[1.25] L. Kang, K. Onishi, Y. Jeon, Byoung Hun Lee, C. Kang, Wen-Jie Qi, R. Nieh, S. Gopalan, R Choi and J. C. Lee, ”MOSFET devices with polysilicon on single-layer HfO2 high-K dielectrics,” in IEDM Tech. Dig., 2000, pp. 35-38.
[1.26] Rino Choi, Chang Seok Kang, Byoung Hun Lee, K. Onishi, R. Nieh, S. Gopalan, E. Dharmarajan and J. C. Lee, ”High-quality ultra-thin HfO2 gate dielectric MOSFETs with TaN electrode and nitridation surface preparation,” in IEDM Tech. Dig., 2001, pp. 15-16.
[1.27] W. J. Zhu, Tso-Ping Ma, T. Tamagawa, J. Kim and Y. Di, ”Current transport in metal/hafnium oxide/silicon structure,” IEEE Electron Device Lett., 23, pp. 97-99, 2002.
[1.28] Z. J. Luo, T. P. Ma, E. Cartier, M. Copel, T. Tamagawa and B. Halpern, ”Ultra-thin ZrO2 (or silicate) with high thermal stability for CMOS gate applications,” in Symp. on VLSI Technology, 2001, pp. 135-136.
[1.29] J. F. Conley, Y. Ono, D. J. Tweet, W. Zhuang, M. Khaiser and R. Solanki, “Preliminary investigation of hafnium oxide deposited via atomic layer chemical vapor deposition (ALCVD),” in Integrated Reliability Workshop, 2001, pp. 11-15.
[1.30] G. D. Wilk, R. M. Wallace and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys. 89, pp.5243-5275, 2001.
[1.31] M. Houssa, M. Naili, V. V. Afanas'ev, M. M. Heyns and A. Stesmans, ”Electrical and physical characterization of high-k dielectric layers,” in Symp. on VLSI Technology, 2001, pp. 196-199.
[1.32] C. M. Perkins, B. B. Triplett, P. C. McIntyre, K. C. Saraswat, S. Haukka and M. Tuominen ,”Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition,” Appl. Phys. Lett. 78, pp. 2357-2359, 2001.
[1.33] T. Shimizu, H. Yamada, A. Kurokawa, K. Ishi and E. Suzuki, ”Metalorganic chemical vapor deposited thin films of high-k La-oxides,” in International Workshop on Gate Insulator, 2001, pp. 196-198.
[1.34] C. Hobbs, H. Tseng, K. Reid, B. Taylor, L. Dip, L. Hebert, R. Garcia, R. Hegde, J. Grant, D. Gilmer, A. Franke, V. Dhandapani, M. Azrak, L. Prabhu, R. Rai, S. Bagchi, J. Conner, S. Backer, F. Dumbuya, B. Nguyen and P. Tobin, “80 nm poly-Si gate CMOS with HfO2 gate dielectric,” in IEDM Tech. Dig., 2001, pp. 30.1.1-30.1.4.
[1.35] H. -J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, E. Dharmarajan and J. C. Lee, ”Novel nitrogen profile engineering for improved TaN/HfO2/Si MOSFET performance,” in IEDM Tech. Dig., 2001, pp. 30.2.1-30.2.4.
[1.36] K. Onishi, Chang Seok Kang, Rino Choi, Hag-Ju Cho, S. Gopalan, R. Nieh, E. Dharmarajan and J. C. Lee, ”Reliability characteristics, including NBTI, of polysilicon gate HfO2 MOSFET's,” in IEDM Tech. Dig., 2001, pp. 30.3.1-30.3.4.
[1.37] Laegu Kang, Byoung Hun Lee, Wen-Jie Qi, Yongjoo Jeon, R. Nieh, S. Gopalan, K. Onishi and J. C. Lee, “Electrical characteristics of highly reliable ultra thin hafnium oxide gate dielectric,” IEEE Electron Device Lett., 21, pp. 181-183, 2000.
[1.38] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen and C. Tsai, “Device and Reliability of High-K Al2O3 gate dielectric with good mobility and low Dit,” in Symp. on VLSI Technology, 1999, pp. 133-134.
[1.39] M. Hiratani, T. Hamada, S. Iijima, Y. Ohji, I. Asano, N. Nakanishi and S. Kimura, ”A heteroepitaxial MIM-Ta2O5 capacitor with enhanced dielectric constant for DRAMs of G-bit generation and beyond,” in Symp. on VLSI Technology, 2001, pp. 166-169.
[1.40] Kee-Won Kwon, Chang-Seok Kang, Soon Oh Park, Ho-Kyu Kang and Sung Tae Ahn, “Thermally robust Ta2O5 capacitor for the 256-Mbit DRAM,” IEEE Electron Device Lett., 43, pp. 919-923, 1996.
[1.41] K. Stein, J. Kocis, G. Hueckel, E. Eld, T. Bartush, R. Groves, N. Greco, D.Harame and T. Tewksbury, ”High reliability metal insulator metal capacitors for silicon germanium analog applications,” in Bipolar/BiCMOS Circuits and Technology Meeting, 1997, pp. 191-194.
[1.42] P. Zurcher, P. Alluri, P. Chu, A. Duvallet, C. Happ, R. Henderson, J. Mendonca, M. Kim, M. Petras, M. Raymond, T. Remmel, D. Roberts, B. Steimle, J. Stipanuk, S. Straub, T. Sparks, M. Tarabbia, H. Thibieroz and M. Miller, ”Integration of thin film MIM capacitors and resistors into copper metallization based RF-CMOS and Bi-CMOS technologies,” in IEDM Tech. Dig., 2000, pp. 153-156.
[1.43] C. P. Yue and S. S. Wong, “A study on substrate effects of silicon-based RF passive components,” in IEEE MTT-S Intl. Microwave Symp., 1999, pp. 1625-1628.
[1.44] Jae-Hak Lee, Dae-Hyun Kim, Yong-Soon Park, Myoung-Kyu Sohn and Kwang-Seok Seo,” DC and RF characteristics of advanced MIM capacitors for MMIC's using ultra-thin remote-PECVD Si3N4 dielectric layers,” IEEE Microwave and Guided Wave Letters, 9, pp. 345-347, 1999.
[1.45] A. Kar-Roy, Chun Hu, M. Racanelli, C. A. Compton, P. Kempf, G. Jolly, P. N. Sherman, Jie Zheng, Zhe Zhang and Aiguo Yin, “High density metal insulator metal capacitors using PECVD nitride for mixed signal and RF circuits,” in IEEE International Conference, 1999, pp. 245-247.
[1.46] T. Yoshitomi, Y. Ebuchi, H. Kimijama, T. Ohguro, E. Morifuji, H. S. Momose, K. Kasai, K. Ishimaru, F. Matsuoka, Y. Katsumata, M. Kinugawa and H. Iwai, ”High performance MIM capacitor for RF BiCMOS/CMOS LSIs,” in Bipolar/BiCMOS Circuits and Technology Meeting, 1999, pp. 133-136.
[1.47] P. K. Larsen, G. L. M. Kampschöer, M. J. E. Ulenaers, G. A. C. M. Spierings, and R. Cuppens, “Nanosecond switching of thin ferroelectric films,” Appl. Phys. Lett., 59, pp. 611-613, 1991.
[1.48] P. C. Joshi and S. B. Krupanidhi, “Switching, fatigue, and retention in ferroelectric Bi4Ti3O12 thin films,” Appl. Phys. Lett., 62, pp. 1928-1930, 1993.
[1.49] X. B. Chen, F. Yan, C. H. Li, Z. G. Zhang, J. S. Zhu and Y. N. Wang, “Switching properties of SrBi2Ta2O9 thin films produced by metalorganic decomposition,” Appl. Phys. Lett., 76, pp. 369-371, 2000.
[1.50] Y. Shichi, S. Tanimoto, T. Goto, K. Kuroiwa and Y. Tarui, “Interaction of PbTiO3 films with Si substrate,” Jpn. J. Appl. Phys., 33, pp. 5172-5177, 1994.
[1.51] E. Tokumitsu, K. Itani, B. K. Moon and H. Ishiwara, “Preparation of Pb(Zr,Ti)O3 films on Si substrates using SrTiO3 buffer layers,” in Proc. Mater. Res. Soc. Symp., vol. 361, pp. 427-432, 1995.
Chapter 2:
[2.1] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics,” IEEE Electron Device Lett. 22, no. 5, pp. 230-232, 2001.
[2.2] C.-M. Hung, Y.-C. Ho, I.-C. Wu, and K. O, “High-Q capacitors implemented in a CMOS process for low-power wireless applications,” in IEEE MTT-S Intl. Microwave Symp., 1998, pp. 505-511.
[2.3] S. J. Lee, H. F. Luan, C. H. Lee, T. S. Jeon, W. P. Bai, Y. Senzaki, D. Roberts, and D. L. Kwong, “Performance and reliability of ultra thin CVD HfO2 gate dielectrics with dual poly-Si gate electrodes,” in Symp. on VLSI Technology, 2001, pp. 133-134.
[2.4] L. Kang, Y. Jeon, K. Onishi, B. H. Lee, W.-J. Qi, R. Nieh, S. Gopalan, and J. C. Lee, “Single-layer thin HfO2 gate dielectric with n+-polysilicon gate,” in Symp. on VLSI Technology, 2000, pp. 44-45.
[2.5] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, “Device and reliability of high-k Al2O3 gate dielectric with good mobility and low Dit,” in Symp. on VLSI Technology, 1999, pp. 133-134.
[2.6] M. Y. Yang, S. B. Chen, A. Chin, C. L. Sun, B. C. Lan, and S. Y. Chen, “One-transistor PZT/Al2O3, SBT/Al2O3 and BLT/Al2O3 stacked gate memory,” in IEDM Tech. Dig., pp. 795-798, 2001.
[2.7] H. Hu, C. Zhu, X. Yu, A. Chin, M. F. Li, B. J. Cho, and D. L. Kwong, “MIM capacitors using atomic-layer-deposited high-κ (HfO2)1-x(Al2O3)x dielectrics,” IEEE Electron Device Lett., 24, 2003 (in press).
[2.8] H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho, and W. K. Choi, “A higher performance MIM Capacitors Using HfO2 dielectrics,” IEEE Electron Device Lett., 23, no. 9, pp. 514-516, 2002.
[2.9] S. B. Chen, J. H. Chou, A. Chin, J. C. Hsieh, and J. Liu, “High density MIM capacitors using Al2O3 and AlTiOx dielectrics,” IEEE Electron Device Lett., 23, no. 4, pp. 185-187, 2002.
[2.10] S. B. Chen, J. H. Chou, K. T. Chan, A. Chin, J. C. Hsieh, and J. Liu, “Frequency-dependent capacitance reduction in high-k AlTiOx and Al2O3 gate dielectrics from IF to RF frequency range,” IEEE Electron Device Lett., 23, no. 4, pp. 203-205, 2002.
[2.11] S. B. Chen, J. H. Chou, A. Chin, J. C. Hsieh, and J. Liu, “RF MIM capacitors using high-k Al2O3 and AlTiOx dielectrics,” in IEEE MTT-S Intl. Microwave Symp., 2002, vol. 1, pp. 201-204,.
[2.12] K. T. Chan, A. Chin, Y. B. Chen, Y.-D. Lin, D. T. S. Duh, and W. J. Lin, “Integrated antennas on Si, proton-implanted Si and Si-on-Quartz,” in IEDM Tech. Dig., 2001, pp. 903-906.
[2.13] K. T. Chan, A. Chin, C. M. Kwei, D. T. Shien, and W. J. Lin, “Transmission line noise from standard and proton-implanted Si,” in IEEE MTT-S Intl. Microwave Symp., 2001, pp. 763-766.
[2.14] Y. H. Wu, A. Chin, K. H. Shih, C. C. Wu, C. P. Liao, S. C. Pai, and C. C. Chi, “RF loss and crosstalk on extremely high resistivity (10k-1M-cm) Si fabricated by ion implantation,” in IEEE MTT-S Intl. Microwave Symp., 2000, pp. 221-224.
[2.15] Y. H. Wu, A. Chin, C. S. Liang, and C. C. Wu, “The performance limiting factors as RF MOSFETs scale down,” in Radio Frequency Integrated Circuits Symp., 2000, pp. 151-155.
[2.16] H. H. Kung, H. S. Jarrett, A. W. Sleight, and A. Ferretti, “Semiconducting oxide anodes in photoassisted electrolysis of water,” J. Appl. Phys., 48, no. 6, pp. 2463-2469, 1977.
[2.17] E. Franke, C. L. Trimble, M. J. DeVries, and J. A. Woollam, “Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,” J. Appl. Phys., 88, no. 9, pp. 5166-5174, 2000.
[2.18] K. H. Yoon and K. B. Park, “Dependence of photoelectric behavior of TiO2 electrodes on processing variables,” J. Appl. Phys., 64, no. 4, pp. 2189-2193, 1988.
[2.19] D. M. Pozar, “Microwave Engineering,” John Wiley & Sons, pp. 208-209, 1998.
[2.20] International Technology Roadmap for Semiconductors, 2001 Edition, Process Integration, Devices, & Structure chapter, pp. 18-19.
[2.21] K.K. Hung, P. K. Ko, Chenming Hu, and Y. C Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistor,” IEEE Trans. Electron Devices, 37, no.3, pp. 654-665, 1990.
Chapter 3:
[3.1] J.-H. Lee, D.-H. Kim, Y.-S. Park, M.-K. Sohn, and K.-S. Seo, “DC and RF characteristics of advanced MIM capacitors for MMIC’s using ultra-thin remote-PECVD Si3N4 dielectric layers,” IEEE Microwave Guided Wave Lett., vol. 9, pp. 345-347, Sept. 1999.
[3.2] Z. Chen, L. Guo, M. Yu, and Y. Zhang, “A study of MIMIM on-chip capacitor using Cu/SiO2 interconnect technology,”IEEE Microwave and Wireless Components Lett., vol. 12, pp. 246-248, July 2002.
[3.3] C. P. Yue and S. S. Wong, “A study on substrate effects of silicon-based RF passive components,” in IEEE MTT-S Dig., 1999, pp. 1625-1628.
[3.4] C.-M. Hung, Y.-C. Ho, I.-C. Wu, and K. O, “High-Q capacitors implemented in a CMOS process for low-power wireless applications,” in IEEE MTT-S Intl. Microwave Symp., 1998, pp. 505-511.
[3.5] K. Shao, S. Chu, K.-W. Chew, G.-P. Wu, C.-H. Ng, N. Tan, B. Shen, A. Yin, and Zhe-Yuan Zheng, “A scaleable metal-insulator-metal capacitors process for 0.35 to 0.18 μm analog and RFCMOS,” in Proc. 6th Int. Conf. on Solid-State and Integrated-Circuit Techno., 2001, 2001, pp 243-246.
[3.6] S. V. Huylenbroeck, S. Decoutere, R. Jenei, and G. Winderickx, “Investigation of PECVD dielectrics for nondispersive Metal-Insulator-Metal capacitors,” IEEE Electron Device Lett., 23, pp. 191-193, 2002.
[3.7] S. J. Lee, H. F. Luan, C. H. Lee, T. S. Jeon, W. P. Bai, Y. Senzaki, D. Roberts, and D. L. Kwong, “Performance and reliability of ultra thin CVD HfO2 gate dielectrics with dual poly-Si gate electrodes,” in Symp. on VLSI Technology, 2001, pp. 133-134.
[3.8] A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, “Device and reliability of high-k Al2O3 gate dielectric with good mobility and low Dit,” in Symp. on VLSI Technology, 1999, pp. 133-134.
[3.9] M. Y. Yang, S. B. Chen, A. Chin, C. L. Sun, B. C. Lan, and S. Y. Chen, “One-transistor PZT/Al2O3, SBT/Al2O3 and BLT/Al2O3 stacked gate memory,” in IEDM Tech. Dig., 2001, pp. 795-798.
[3.10] H. Hu, C. Zhu, X. Yu, A. Chin, M. F. Li, B. J. Cho, and D. L. Kwong, “MIM Capacitors Using Atomic-Layer-Deposited High-κ (HfO2)1-x(Al2O3)x dielectrics,” IEEE Electron Device Lett., vol. 24, pp.60-62, Feb. 2003.
[3.11] S. B. Chen, J. H. Chou, A. Chin, J. C. Hsieh, and J. Liu, “High density MIM capacitors using Al2O3 and AlTiOx dielectrics,” IEEE Electron Device Lett., vol. 23, pp. 185-187, Apr. 2002.
[3.12] S. B. Chen, J. H. Chou, K. T. Chan, A. Chin, J. C. Hsieh, and J. Liu, “Frequency-dependent capacitance reduction in high-k AlTiOx and Al2O3 gate dielectrics from IF to RF frequency range,” IEEE Electron Device Lett., vol. 23, pp. 203-205, 2002.
[3.13] S. B. Chen, J. H. Chou, A. Chin, J. C. Hsieh, and J. Liu, “RF MIM capacitors using high-K Al2O3 and AlTiOx dielectrics,” IEEE MTT-S Intl. Microwave Symp., vol. 1, June 2002, pp. 201-204.
[3.14] K. T. Chan, A. Chin, C. M. Kwei, D. T. Shien, and W. J. Lin, “Transmission line noise from standard and proton-implanted Si,” in IEEE MTT-S Intl. Microwave Symp., June 2001, pp. 763-766.
[3.15] K. T. Chan, A. Chin, Y. B. Chen, Y.-D. Lin, D. T. S. Duh, and W. J. Lin, “Integrated antennas on Si, proton-implanted Si and Si-on-Quartz,” in IEDM Tech. Dig., 2001, pp. 903-906.
[3.16] Y. H. Wu, A. Chin, K. H. Shih, C. C. Wu, C. P. Liao, S. C. Pai, and C. C. Chi, “RF loss and crosstalk on extremely high resistivity (10k-1M-cm) Si fabricated by ion implantation,” in IEEE MTT-S Intl. Microwave Symp., 2000, pp. 221-224.
[3.17] Y. H. Wu, A. Chin, C. S. Liang, and C. C. Wu, “The performance limiting factors as RF MOSFETs scale down,” in Radio Frequency Integrated Circuits Symp., 2000, pp. 151-155.
Chapter 4:
[4.1] C. H. Huang, C. H. Lai, J. C. Hsieh and J. Liu and A. Chin, “RF noise in 0.18m and 0.13m MOSFETs,” IEEE Wireless & Microwave Components Lett., 12, pp. 464-466, Dec. 2002.
[4.2] C. H. Huang, K. T. Chan, C. Y. Chen, A. Chin, G. W. Huang, C. Tseng, V. Liang, J. K. Chen, and S. C. Chien, “The minimum noise figure and mechanism as scaling RF MOSFETs from 0.18 to 0.13 m technology nodes,” IEEE RF-IC International Microwave Symp. Dig., Philadelphia, PA, pp. 373-376, June 2003.
[4.3] Y. H. Wu, A. Chin, C. S. Liang, and C. C. Wu, “The performance limiting factors as RF MOSFETs scaling down,” IEEE RF-IC International Microwave Symp. Dig., pp. 151-155, June 2000.
[4.4] J. W. Lee, H. S. Song, K. M. Kim, J. M. Lee, and J. S. Roh, ”The Physical and Electrical Characteristics of Ta2O5 and Physical Vapor Deposited Ru in Metal-Insulator-Metal capacitors,” J. Electrochem. Soc., 149, F56, 2002.
[4.5] S. Y. Kang, H. J. Lim, C. S. Hwang, and H. J. Kim, “Metallorganic Chemical Vapor Deposition of Ru Films Using Cyclopentadienyl- Propylcyclopentadienylruthenium (II) and Oxygen),” J. Electrochem. Soc., 149, C317, 2002.
[4.6] C. P. Yue and S. S. Wong, “A study on substrate effects of silicon-based RF passive components,” IEEE MTT-S International Microwave Symp. Dig., pp. 1625-1628, June 1999.
[4.7] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics,” IEEE Electron Device Lett., 22, no. 5, pp. 230-232, 2001.
[4.8] C.-M. Hung, Y.-C. Ho, I.-C. Wu, and K. O, “High-Q capacitors implemented in a CMOS process for low-power wireless applications,” IEEE MTT-S International Microwave Symp. Dig., pp. 505-508, June 1998.
[4.9] Z. Chen, L. Guo, M. Yu, and Y. Zhang, “A study of MIMIM on-chip capacitor using Cu/SiO2 interconnect technology,” IEEE Microwave and Wireless Components Lett., 12, pp. 246-248, July 2002.
[4.10] J. H. Lee, D. H. Kim, Y. S. Park, M. K. Sohn, and K. S. Seo, “DC and RF characteristics of advanced MIM capacitors for MMIC’s using ultra-thin remote-PECVD Si3N4 dielectric layers,” IEEE Microwave Guided Wave Lett., 9, pp. 345-347, Sept. 1999.
[4.11] K. Shao, S. Chu, K. W. Chew, G. P. Wu, C. H. Ng, N. Tan, B. Shen, A. Yin, and Zhe-Yuan Zheng, “A scaleable metal-insulator-metal capacitors process for 0.35 to 0.18 μm analog and RFCMOS,” 6th International Conf. on Solid-State and Integrated-Circuit Tech. Dig., 2001, pp 243-246.
[4.12] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, and Y. Yoshihara, “Advanced gate dielectric materials for sub-100 nm CMOS,” International Electron Device Meeting (IEDM) Tech. Dig., 2002, pp. 625-628.
[4.13] S. J. Lee, H. F. Luan, C. H. Lee, T. S. Jeon, W. P. Bai, Y. Senzaki, D. Roberts, and D. L. Kwong, “Performance and reliability of ultra thin CVD HfO2 gate dielectrics with dual poly-Si gate electrodes,” in Symp. on VLSI Technology, 2001, pp. 133-134.
[4.14] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, “High Quality La2O3 and Al2O3 Gate Dielectrics with Equivalent Oxide Thickness 5-10Å,” Symp. on VLSI Tech. Dig., 2000, pp. 19-20.
[4.15] M. Y. Yang, C. H. Huang, A. Chin, C. Zhu, M. F. Li, and D. L. Kwong, "High-Density MIM Capacitors using AlTaOx Dielectrics,” IEEE Electron Device Lett., 24, pp. 306-308, May 2003.
[4.16] S. B. Chen, J. H. Chou, A. Chin, J. C. Hsieh, and J. Liu, “High density MIM capacitors using Al2O3 and AlTiOx dielectrics,” IEEE Electron Device Lett., 23, no. 4, pp. 185-187, 2002.
[4.17] H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho, and W. K. Choi, “A high performance MIM capacitor using HfO2 dielectrics,” IEEE Electron Device Lett., 23, pp. 514-516, 2002.
[4.18] S. B. Chen, J. H. Chou, A. Chin, J. C. Hsieh, and J. Liu, “RF MIM capacitors using high-K Al2O3 and AlTiOx dielectrics,” IEEE MTT-S Intl. Microwave Symp., vol. 1, pp. 201-204, June 2002.
[4.19] C. H. Huang, M.Y. Yang, A. Chin, C. X. Zhu, M. F. Li, and D. L. Kwong, “High density RF MIM capacitors using high- AlTaOx dielectrics,” IEEE MTT-S International Microwave Symp., 2003, pp. 507-510.
[4.20] C. Zhu, H. Hu, X. Yu, A. Chin, M. F. Li, and D. L. Kwong, ”Voltage and temperature dependence of capacitance of High- HfO2 MIM capacitors: a unified understanding and prediction,” International Electron Devices Meeting (IEDM) Tech. Dig., 2003, pp. 879-882.
[4.21] K. T. Chan, A. Chin, C. M. Kwei, D. T. Shien, and W. J. Lin, “Transmission line noise from standard and proton-implanted Si,” in IEEE MTT-S Intl. Microwave Symp., 2001, pp. 763-766.
[4.22] K. T. Chan, A. Chin, Y. B. Chen, Y.-D. Lin, D. T. S. Duh, and W. J. Lin, “Integrated antennas on Si, proton-implanted Si and Si-on-Quartz,” in IEDM Tech. Dig., 2001, pp. 903-906.
[4.23] Y. H. Wu, A. Chin, K. H. Shih, C. C. Wu, C. P. Liao, S. C. Pai, and C. C. Chi, “RF loss and crosstalk on extremely high resistivity (10k-1M-cm) Si fabricated by ion implantation,” in IEEE MTT-S Intl. Microwave Symp., 2000, pp. 221-224.
[4.24] T. Park, H. J. Cho, J. D. Choe, S. Y. Han, S.-M. Jung, J. H. Jeong, B. Y. Nam, O. I. Kwon, J. N. Han, H. S. Kang, M. C. Chae, G. S. Yeo, S. W. Lee, D. Y. Lee, D. Park, K. Kim, E. Yoon, and J. H. Lee, “Static noise margin of the full DG-CMOS SRAM cell using bulk FinFETs (Omega MOSFETs),” International Electron Devices Meeting (IEDM) Tech. Dig., 2003, 27.
Chapter 5:
[5.1] C. H. Huang, C. H. Lai, J. C. Hsieh and J. Liu and A. Chin, “RF noise in 0.18m and 0.13m MOSFETs,” IEEE Wireless & Microwave Components Lett., 12, pp. 464-466, Dec. 2002.
[5.2] C. H. Huang, K. T. Chan, C. Y. Chen, A. Chin, G. W. Huang, C. Tseng, V. Liang, J. K. Chen, and S. C. Chien, “The minimum noise figure and mechanism as scaling RF MOSFETs from 0.18 to 0.13 m technology nodes,” IEEE RF-IC International Microwave Symp. Dig., Philadelphia, PA, pp. 373-376, June 2003.
[5.3] Y. H. Wu, A. Chin, C. S. Liang, and C. C. Wu, “The performance limiting factors as RF MOSFETs scaling down,” IEEE RF-IC International Microwave Symp. Dig., pp. 151-155, June 2000.
[5.4] J. W. Lee, H. S. Song, K. M. Kim, J. M. Lee, and J. S. Roh, “The Physical and Electrical Characteristics of Ta2O5 and Physical Vapor Deposited Ru in Metal-Insulator-Metal Capacitors,” J. Electrochem. Soc., 149, F56, 2002.
[5.5] S. Y. Kang, H. J. Lim, C. S. Hwang, and H. J. Kim, ”Metallorganic Chemical Vapor Deposition of Ru Films Using Cyclopentadienyl- Propylcyclopentadienylruthenium (II) and Oxygen,” J. Electrochem. Soc., 149, C317, 2002.
[5.6] C. P. Yue and S. S. Wong, “A study on substrate effects of silicon-based RF passive components,” IEEE MTT-S International Microwave Symp. Dig., pp. 1625-1628, June 1999.
[5.7] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics,” IEEE Electron Device Lett., 22, no. 5, pp. 230-232, 2001.
[5.8] C.-M. Hung, Y.-C. Ho, I.-C. Wu, and K. O, “High-Q capacitors implemented in a CMOS process for low-power wireless applications,” IEEE MTT-S International Microwave Symp. Dig., pp. 505-508, June 1998.
[5.9] Z. Chen, L. Guo, M. Yu, and Y. Zhang, “A study of MIMIM on-chip capacitor using Cu/SiO2 interconnect technology,” IEEE Microwave and Wireless Components Lett., vol. 12, pp. 246-248, July 2002.
[5.10] J. H. Lee, D. H. Kim, Y. S. Park, M. K. Sohn, and K. S. Seo, “DC and RF characteristics of advanced MIM capacitors for MMIC’s using ultra-thin remote-PECVD Si3N4 dielectric layers,” IEEE Microwave Guided Wave Lett., 9, pp. 345-347, Sept. 1999.
[5.11] K. Shao, S. Chu, K. W. Chew, G. P. Wu, C. H. Ng, N. Tan, B. Shen, A. Yin, and Zhe-Yuan Zheng, “A scaleable metal-insulator-metal capacitors process for 0.35 to 0.18 μm analog and RFCMOS,” 6th International Conf. on Solid-State and Integrated-Circuit Tech. Dig., 2001, pp 243-246.
[5.12] S. J. Lee, H. F. Luan, C. H. Lee, T. S. Jeon, W. P. Bai, Y. Senzaki, D. Roberts, and D. L. Kwong, “Performance and reliability of ultra thin CVD HfO2 gate dielectrics with dual poly-Si gate electrodes,” in Symp. on VLSI Technology, 2001, pp. 133-134.
[5.13] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, “High Quality La2O3 and Al2O3 Gate Dielectrics with Equivalent Oxide Thickness 5-10Å,” Symp. on VLSI Tech. Dig., 2000, pp. 19-20.
[5.14] M. Y. Yang, C. H. Huang, A. Chin, C. Zhu, M. F. Li, and D. L. Kwong, "High-Density MIM Capacitors using AlTaOx Dielectrics,” IEEE Electron Device Lett., vol. 24, pp. 306-308, May 2003.
[5.15] M. Y. Yang, C. H. Huang, A. Chin, C. Zhu, M. F. Li, and D. L. Kwong, “Very High Density MIM Capacitors (17fF/m2) using high- Al2O3 Doped Ta2O5 Dielectrics,” IEEE Wireless & Microwave Components Lett., vol. 13, pp. 431-433, Oct. 2003.
[5.16] S. B. Chen, J. H. Chou, A. Chin, J. C. Hsieh, and J. Liu, “High density MIM capacitors using Al2O3 and AlTiOx dielectrics,” IEEE Electron Device Lett., 23, no. 4, pp. 185-187, 2002.
[5.17] H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho, and W. K. Choi, “A high performance MIM capacitor using HfO2 dielectrics,” IEEE Electron Device Lett., 23, pp. 514-516, 2002.
[5.18] S. B. Chen, J. H. Chou, A. Chin, J. C. Hsieh, and J. Liu, “RF MIM capacitors using high-K Al2O3 and AlTiOx dielectrics,” IEEE MTT-S Intl. Microwave Symp., vol. 1, pp. 201-204, June 2002.
[5.19] C. H. Huang, M.Y. Yang, A. Chin, C. X. Zhu, M. F. Li, and D. L. Kwong, “High density RF MIM capacitors using high- AlTaOx dielectrics,” IEEE MTT-S International Microwave Symp., 2003, pp. 507-510.
[5.20] International Technology Roadmap for Semiconductors, 2001 Edition, Process Integration, Devices, & Structure chapter, 18.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top