(3.238.96.184) 您好!臺灣時間:2021/05/12 23:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:羅志偉
研究生(外文):Chih-Wei Luo
論文名稱:以極化飛秒光譜研究釔鋇銅氧化物之各向異性超快動力學
論文名稱(外文):Anisotropic Ultrafast Dynamics in YBa2Cu3O7-δ Probed by Polarized Femtosecond Spectroscopy
指導教授:吳光雄吳光雄引用關係
指導教授(外文):Prof. Kaung-Hsiung Wu
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:英文
論文頁數:109
中文關鍵詞:極化飛秒光譜釔鋇銅氧化物高溫超導體各向異性超快動力學能隙對稱性
外文關鍵詞:Polarized femtosecond spectroscopyYBa2Cu3O7-δHigh Tc superconductorAnisotropicUltrafast dynamicsSymmetry of gap
相關次數:
  • 被引用被引用:7
  • 點閱點閱:328
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們發展具軸向解析之飛秒光譜及製備晶軸取向良好之(100)、(110)和(001)薄膜來研究釔鋇銅氧高溫超導體中塊材超導能隙及偽能隙之空間對稱性。
首先,我們利用脈衝雷射蒸鍍技術製備高品質平面排列的(100)和(110)釔鋇銅氧薄膜。並利用一系列X光繞射、四點量測及原子力顯微鏡等常用的標準方法分析薄膜之特性。其中最引人注意的就是利用X光近邊緣吸收光譜清楚分辨(100)釔鋇銅氧薄膜上三個晶軸的方向。
從一系列有鐠摻雜及有氧缺陷的釔鋇銅氧薄膜,不管在超導態或正常態皆可以得到行為不同的瞬時反射率變化(ΔR/R),這清楚顯示釔鋇銅氧的費米面會隨著摻雜而移動。此外,本論文中關於描述飛秒吸收過程及載子弛緩機制的模型也令人滿意的適用於所有實驗結果。
在(100)釔鋇銅氧薄膜上進行一系列偏振相依的量測,我們可以區分激發光和探測光在激發-探測過程中扮演的角色。沿不同晶軸方向的準粒子弛緩行為,可藉由探測光的偏振方向來選擇探測;而激發光的偏振方向只影響ΔR/R的信號大小,不影響ΔR/R中所包含的訊息及特性。
利用這種具塊材靈敏度的光譜及配合晶軸取向良好的薄膜,我們可以有效探測到不同軸向的準粒子弛緩動力行為。從瞬時反射率變化大小及其特徵弛緩時間的顯著各向異性,表示在不同晶軸方向和空間平面上之弛緩過程有本質上的不同。進一步透過軸向相依的分析,銅氧化物超導體中的塊材超導能隙自然呈現d-波對稱性。
最後,我們分別在同一片(100)及(110)釔鋇銅氧樣品上,量測b軸及ab軸在不同氧含量下瞬時反射率隨溫度的變化。從瞬時反射率隨溫度變化的分析,我們發現塊材超導能隙是不隨氧含量變化而改變的 -波對稱性;而塊材偽能隙會隨著氧含量的變化而改變其對稱性,也就是說,從最佳摻雜區的 -波對稱性變成摻雜不足區的 -波對稱性。我們首次依據這些能隙對稱性的實驗結果,提出一個新的物理圖像來了解銅氧化物超導體的超導能隙和偽能隙。
In this dissertation, we developed a polarized femtosecond pump-probe system capable of performing orientation-resolved ultrafast carrier dynamics. By applying this system to a series of well-textured (100)-, (110)-, and (001)-oriented YBa2Cu3O7-δ (YBCO) thin films, the spatial symmetry of bulk-superconducting gap and bulk-pseudogap of the system unambiguously disclosed which shows some salient features never being seen before.
High-quality (001)-oriented as well as in-plane aligned (100)- and (110)-oriented YBCO thin films were prepared by pulsed laser deposition (PLD). Their structural characteristics were examined by several standard methods such as x-ray diffraction patterns, four-probe measurements, and atomic force microscope (AFM). In addition to these examinations, the polarization-dependent x-ray absorption near-edge spectra (XANES) of the O 1s were utilized to unambiguously identify the a-, b-, and c-axes of YBCO thin films.
Femtosecond spectroscopies obtained from the systematically treated oxygen-deficient and Pr-doped (001) YBCO thin films showed that the Fermi surface shiftings can be clearly delineated by the sign change and relaxation behavior of the transient reflectivity (ΔR/R) at either normal or superconducting state. These results were satisfactorily interpreted by directly attributing the probed responses to the carrier relaxation dynamics. Prominent parameters were obtained by fitting the data to models constructed based on the above interpretation.
The polarization-dependent measurements were shown to give distinct action and response of the polarized pump and probe pulses along different orientations thus should be able to reveal any anisotropy in the material. It turned out that the characteristics of ΔR/R depend only on the polarized direction of probe pulses and the polarized direction of pump pulses only affects the amplitude of ΔR/R.
Combined with the well-textured samples, this bulk-sensitive spectroscopy serves as an effective probe to quasiparticle relaxation dynamics along different crystalline orientations. The significant anisotropy in both the magnitude of the photoinduced transient reflectivity change and the characteristic relaxation time indicate that the nature of the relaxation channel is intrinsically different in various axes and planes. By the orientation-dependent analysis, d-wave symmetry of the bulk-superconducting gap in cuprate superconductors emerges naturally.
Finally, we measured the temperature-dependent DR/R along the b-axis and ab-diagonal for various oxygen contents in a single (100) YBCO thin film and a single (110) YBCO thin film, respectively. From the behavior of the amplitude of temperature-dependent DR/R, we found that although the bulk-superconducting gap remains as -symmetry for optimal and underdoped YBCO. However, the symmetry of the bulk-pseudogap evolves with the doping level, i.e. it is -symmetry in optimal-doping region and gradually rotates to -symmetry in underdoped region. According to our current results, we suggest a new scenario for superconducting gap and pseudogap in cuprate superconductors.
Abstract (in Chinese) iii
Abstract (in English) v
Chapter 1 Introduction 1
1.1 Motivation 3
1.2 Survey of the ultrafast near-infrared spectroscopy in high-
Tc superconductors 4
1.3 Femtosecond time-resolved spectroscopy 6
1.4 The organization of this dissertation 9
Chapter 2 Preparation and characterization of YBa2Cu3O7-δ thin
films 10
2.1 Preparation of various-orientation YBa2Cu3O7-δ thin films10
2.1.1 (100) YBa2Cu3O7-δ thin films 12
2.1.2 (110) YBa2Cu3O7-δ thin films 13
2.1.3 (001) YBa2Cu3O7-δ thin films 13
2.2 Characterization of YBa2Cu3O7-δ thin films with various
orientations 14
2.2.1 Orientation and structure of films by x-ray
diffraction 14
2.2.2 Surface morphology 16
2.2.3 Electric transport properties 17
2.2.4 Polarization-dependent x-ray absorption near-edge
spectra (XANES) of the O 1s 19
2.3 Summary 22
Chapter 3 Polarized femtosecond spectroscopy: experiments and
physics 23
3.1 Polarized femtosecond time-resolved spectroscopy 23
3.1.1 The principle of pump-probe technique 24
3.1.2 Experimental setup 26
3.1.3 Coherent effects 30
3.2 Physics revealed by the time-resolved spectroscopy 35
3.2.1 Metals and semiconductor quantum wells 35
3.2.2 Cuprate superconductors; YBCO 39
3.2.3 Mechanism of transient optical responses 48
Chapter 4 Anisotropic femtosecond near-infrared responses in
YBa2Cu3O7-δ 52
4.1 Probing the anisotropic Fermi surface in YBCO 52
4.1.1 The shifting of Fermi surface in various-doping (001)
YBCO thin films 53
4.1.2 Spectra-resolved pump-probe signals in (100) YBCO thin
films 55
4.1.3 Summary 57
4.2 Polarization-dependent femtosecond spectroscopy 58
4.2.1 Characteristics of ΔR/R with specific-polarization
states of pump and probe pulses 58
4.2.2 Polarization-dependent DR/R in bc-plane of YBCO 59
4.2.3 Summary 61
4.3 Spatial symmetry of superconducting gap in near optimal-
doping YBCO 62
4.3.1 Orientation-dependent femtosecond spectroscopies 62
4.3.2 Plane-dependent femtosecond spectroscopies 66
4.3.3 Summary 68
4.4 Spatial symmetry of superconducting gap and pseudogap in
oxygen-deficient YBCO 69
4.4.1 Femtosecond dynamics in oxygen-deficient (100) YBCO
thin films 69
4.4.2 The evolution of superconducting gap and pseudogap in
under-doped region 72
4.4.3 Summary 75
Chapter 5 Summary and conclusions 77
Appendix A 80
References 85
Curriculum vitae 96
Acknowledgement 100
[1] J. G. Bednorz and K. A. Müller, “Possible high Tc superconductivity in the Ba-La-Cu-O system”, Z. Phys. B 64, 189 (1986).
[2] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity”, Phys. Rev. 108, 1175 (1957).
[3] M. K. Wu, J. R. Ashbrun, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, ”Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure”, Phys. Rev. Lett. 58, 908 (1987).
[4] T. Timusk, and B. Statt, “The pseudogap in high-temperature superconductors: an experimental survey”, Rep. Prog. Phys. 62, 61 (1999).
[5] Z. X. Shen, W. E. Spicer, D. M. King, D. S. Dessau, and B. O. Wells, “Photoemission studies of high-Tc superconductors: the superconducting gap”, Science 267, 343 (1995).
[6] R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, “Ultrafast mid-infrared response of YBa2Cu3O7-δ”, Science 287, 470 (2000).
[7] R. J. Cava, B. Batlogg, R. B. van Dover, D. W. Murphy, S. Sunshine, T. Siegrist, J. P. Remeika, E. A. Rietman, S. Zahurak, and G. P. Espinosa, “Bulk superconductivity at 91 K in single-phase oxygen-deficient pervoskite Ba2YCu3O9-δ”, Phys. Rev. Lett. 58, 1676 (1987).
[8] D. A. Wollman, D. J. Van Harlingen, W. C. Lee, D. M. Ginsberg, and A. J. Leggett, “Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs”, Phys. Rev. Lett. 71, 2134 (1993).
[9] C. C. Tsuei and J. R. Kirtley, “Pairing symmetry in cuprate superconductors”, Rev. Mod. Phys. 72, 969 (2000).
[10] D. S. Dessau, Z.-X. Shen, D. M. King, D. S. Marshall, L. W. Lombardo, P. H. Dickinson, A. G. Loeser, J. DiCarlo, C.-H. Park, A. Kapitulnik, and W. E. Spicer, “Key feartures in the measured band structure of Bi2Sr2CaCu2O8+δ: flat bands at EF and Fermi surface Nesting”, Phys. Rev. Lett. 71, 2781 (1993).
[11] Z.-X. Shen and D. S. Dessau, “Electronic structure and photoemmision studies of late transition-metal oxides - mott insulators and high-temperature superconductors”, Physics Reports 253, 1 (1995).
[12] H. Ding, M. R. Norman, T. Yokoya, T. Takeuchi, M. Randeria, J. C. Campuzano, T. Takahashi, T. Mochiku, and K. Kadowaki, “Evolution of the Fermi surface with carrier concentration in Bi2Sr2CaCu2O8+δ“, Phys. Rev. Lett. 78, 2628 (1997).
[13] V. V. Kabanov, J. Demsar, B. Podobnik, and D. Mihailovic, “Quasiparticle relaxation dynamics in superconductors with different gap structures: theory and experiments on YBa2Cu3O7-δ“, Phys. Rev. B 59, 1497 (1999).
[14] D. Rubio, J. Mesot, K. Conder, S. Janssen, H. Mutka, and Furrer, “Doping and isotope dependence of the pseudogap in high-Tc cuprates observed by neutron crystal-field spectroscopy: a fast local probe”, J. Supercond. 13, 727 (2000).
[15] Anand Bhattacharya, Igor Zutic, Oriol T. Valls, and A. M. Goldman, “Angular dependence of the nonlinear transverse magnetic moment of YBa2Cu3O6.95 in the Meissner state”, Phys. Rev. Lett. 82, 3132 (1999).
[16] M. Willemin, C. Rossel, J. Hofer, H. Keller, Z. F. Ren, and J. H. Wang, “Pairing symmetry from in-plane torque anisotropy in Tl2Ba2CuO6+δ thin films”, Phys. Rev. B 57, 6137 (1998).
[17] K. A. Müller, “On the macroscopic s- and d-wave symmetry in cuprate superconductors”, Phil. Mag. Lett. 82, 279 (2002).
[18] J. Demsar, B. Podobnik, V. V. Kabanov, Th. Wolf, and D. Mihailovic, “Superconducting gap Δc, the pseudogap Δp, and pair fluctuations above Tc in overdoped Y1-xCaxBa2Cu3O7-δ from femtosecond time-domain spectroscopy“, Phys. Rev. Lett. 82, 4918 (1999).
[19] S. G. Han, Z. V. Vardeny, K. S. Wong, O. G. Symko, and G. Koren, “Femtosecond optical detection of quasiparticle dynamics in high-Tc YBa2Cu3O7-δ superconducting thin films”, Phys. Rev. Lett. 65, 2708 (1990).
[20] J. M. Chwalek, C. Uher, J. F. Whitaker, G. A. Mourou, J. Agostinelli, and M. Lelental, “Femtosecond optical absorption studies of nonequilibrium electronic processes in high Tc superconductors”, Appl. Phys. Lett. 57, 1696 (1990).
[21] G. L. Eesley, J. Heremans, M. S. Meyer, G. L.Doll, and S. H. Liou, “Relaxation time of the order parameter in a high-temperature superconductor”, Phys. Rev. Lett. 65, 3445 (1990).
[22] D. H. Reitze, A. M. Weiner, A. Inam, and S. Etemad, “Fermi-level dependence of femtosecond response in nonequilibrium high-Tc superconductors”, Phys. Rev. B 46, 14309 (1992).
[23] T. Gong, L. X. Zheng, W. Xiong, W. Kula, Y. Kostoulas, R. Sobolewski, and P. M. Fauchet, “Femtosecond optical response of Y-Ba-Cu-O thin films: the dependence on optical frequency, excitation intensity, and electric current”, Phys. Rev. B 47, 14495 (1993).
[24] Yongqian Liu, John F. Whitaker, Ctirad Uher, Jian-Liang Peng, Z. Y. Li, and R. L. Greene, “Ultrafast nonequilibrium carrier relaxation in single-crystal Nd1.85Ce0.15CuO4-y”, Appl. Phys. Lett. 63, 979 (1993).
[25] J. Demsar, B. Podobnik, J. E. Evetts, G. A. Wagner, and D. Mihailovic, “Evidence for crossover from a Bose-Einstein condensate to a BCS-like superconductor with doping in YBa2Cu3O7-δ from quasiparticle relaxation dynamics experiments”, Europhys. Lett. 45(3), 381 (1999).
[26] P. Gay, C. J. Stevens, D. C. Smith, C. Chen, and J. F. Ryan, “Anisotropy of non-equilibrium quasi-particle dynamics in single-crystal YBa2Cu3O7-δ”, Physica C 341, 2269 (2000).
[27] Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Field, S. H. Blanton, U. Welp, G. W. Grabtree, Y. Fang, and J. Z. Liu, “Superconducting energy gap and normal-state conductivity of single-domain YBa2Cu3O7 crystal”, Phys. Rev. Lett. 65, 801 (1990).
[28] B. Koch, H. P. Geserich, and Th. Wolf, “Anisotropy of the reflectance spectrum and of the dielectric function of YBa2Cu3O7 within the (001) plane”, Solid State Commun. 71, 495 (1989).
[29] M. P. Petrov, A. I. Grachev, M. V. Krasin’kova, A. A. Nechitailov, V. V. Prokofiev, V. V. Poborchy, S. I. Shagin, and N. F. Kartenko, “Reflectivity anisotropy of superconducting YBa2Cu3O7-x single crystals in the a-b plane”, Solid State Commun. 67, 1197 (1988).
[30] A. Frenkel, “Mechanism of nonequilibrium optical response of high-temperature superconductors”, Phys. Rev. B 48, 9717 (1993).
[31] S. D. Brorson, A. Kazeroonian, D. W. Face, T. K. Cheng, G. L. Doll, M. S. Dresselhaus, G. Dresselhaus, E. P. Ippen, T. Venkatesan, X. D. Wu, and A. Inam, “Femtosecond thermomodulation study of high-Tc superconductors”, Solid State Commun. 74, 1305 (1990).
[32] A. S. Kazeroonian, T. K. Cheng, S. D. Brorson, Q. Li, E. P. Ippen, X. D. Wu, T. Venkatesan, S. Etemad, M. S. Dresselhaus, and G. Dresselhaus, “Probing the Fermi level of Y1-xPrxBa2Cu3O7-δ by femtosecond spectroscopy”, Solid State Commun. 78, 95 (1991).
[33] P. B. Allen, “Theory of thermal relaxation of electrons in metals”, Phys. Rev. Lett. 59, 1460 (1987).
[34] S. P. Chen, “Growth and characterization of (103)- and (110)-YBa2Cu3O7 superconducting thin films“, Ph. D. dissertation, National Chiao Tung University, Taiwan, R.O.C., (2000).
[35] K. H. Wu, J. Y. Juang, C. L. Lee, T. C. Lai, T. M. Uen, Y. S. Gou, S. L. Tu, S. J. Yang, and S. E. Hsu, “Optimization of depositing YBa2Cu3O7-δ superconducting thin films by excimer laser ablation with CO2 laser-heated substrates“, Physica C 195, 241 (1992).
[36] R. Brown, V. Pendrick, D. Kalokitis, and B. H. T. Chai, “Low-loss substracte for microwave application of high-temperature superconductor films”, Appl. Phys. Lett. 57, 1351 (1990).
[37] C. Tomé-Rosa, G. Jakob, M. Maul, A. Walkenhorst, M. Schmitt, P. Wagner, P. Przyslupski, and H. Adrian, “Growth of high quality YBa2Cu3O7 films on various substrate materials and influence of Zn-doping on superconductivity”, Physica C 171, 231 (1990).
[38] S. Miyazawa and M. Mukaida, “Atomic graphoepitaxy: a growth model for c-axis in-plane-aligned, a-axis oriented YBa2Cu3Ox thin films”, Appl. Phys. Lett. 64, 2160 (1994).
[39] A. W. McConnell, R. A. Hughes, A. Dabkowski, H. A. Dabkowska, J. S. Preston, J. E. Greedan, and T. Timusk, “Evaluation of LaSrGaO4 as a substrate for YBa2Cu3O7-δ”, Physica C 225, 7 (1994).
[40] Z. Trajanovic, I. Takeuchi, P. A. Warburton, C. J. Lobb, and T. Venkatesan, “Grain growth and grain boundaries in in-plane aligned a-axis oriented YBa2Cu3O7-x films on (100) LaSrGaO4”, Physica C 265, 79 (1996).
[41] S. Hontsu, J. Ishii, T. Kawai, and S. Kawai, “LaSrGaO4 substrate gives oriented crystalline YBa2Cu3O7-y films”, Appl. Phys. Lett. 59, 2886 (1991).
[42] S. Hontsu, N. Mukai, J. Ishii, T. Kawai, and S. Kawai, “A-axis oriented growth of YBa2Cu3O7-y films on LaSrGaO4 (100) substrates”, Appl. Phys. Lett. 61, 1134 (1992).
[43] C. B. Eom, A. F. Marshall, S. S. Laderman, R. D. Jacowitz, and T. H. Geballe, “Epitaxial and smooth films of a-axis YBa2Cu3O7 “, Science 249, 1549 (1990).
[44] K. H. Young and J. Z. Sun, “Synthesis of in-plane aligned a-axis YBa2Cu3O7-δ thin films”, Appl. Phys. Lett. 59, 2448 (1991).
[45] Y. S. Jiang, T. Kobayashi, and T. Goto, “Preparation of a-axis oriented YBCO film on CeO2 buffered sapphire substrate”, IEEE Trans. on Appl. Superconductivity 9, 1657 (1999).
[46] K. Tanabe, D. K. Lathrop, S. E. Russek, and R. A. Buhrman, “Epitaxial Y-Ba-Cu-O thin films on MgO deposited by high-pressure reactive magnetron sputtering”, J. Appl. Phys. 66, 3148 (1989).
[47] T. Minamikawa, M. Tazoe, K. Segawa, Y. Yonezawa, A. Morimoto, and T. Shimizu, “Preparation of a-axis-oriented YBa2Cu3Ox superconducting films on MgO substrates with PrBa2Cu3Ox buffer layers”, Physica C 267, 330 (1996).
[48] D. Dijkkamp, T. Venkatesan, X. D. Wu, S. A. Shaheen, N. Jisrawi, Y. H. Min-Lee, W. L. McLean, and M. Croft, ”Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material”, Appl. Phys. Lett. 51, 619 (1987).
[49] D. B. Chrisey and G. K. Hubler, “Mechanisms of Pulsed Laser Sputtering” in Pulsed Laser Deposition of Thin Films, 55 (1994).
[50] A. Inam, C. T. Rogers, R. Ramesh, K. Remschnig, L. Farrow, D. Hart, T. Venkatesan, and B. Wilkens, “A-axis oriented epitaxial YBa2Cu3O7-x — PrBa2Cu3O7-y heterostructures”, Appl. Phys. Lett. 57, 2484 (1990).
[51] K. H. Wu, M. C. Hsieh, S. P. Chen, S. C. Chao, J. Y. Juang, T. M. Uen, Y. S. Gou, T. Y. Tseng, C. M. Fu. J. M. Chen, and R. G. Liu, “Preparation and electronic properties of YBa2Cu3Ox films with controlled oxygen stoichiometries”, Jpn. J. Appl. Phys. 37, 4346 (1998).
[52] K. Takenaka, K. Mizuhashi, H. Takagi, and S. Uchida, “Interplane charge transport in YBa2Cu3O7-y: Spin-gap effect on in-plane and out-of-plane resistivity”, Phys. Rev. B 50, 6534 (1994).
[53] S. J. Hagen, T. W. Jing, Z. Z. Wang, J. Horvath, and N. P. Ong, “Out-of-plane conductivity in single-crystal YBa2Cu3O7”, Phys. Rev. B 37, 7928 (1988).
[54] V. Ambegaokar and B. Halperin, “Voltage due to thermal noise in the dc Josephson effect”, Phys. Rev. Lett. 22, 1364 (1969).
[55] R. Gross, P. Chaudhari, D. Dimos, A. Gupta, and G. Koren, “Thermally activated phase slippage in high-Tc grain-boundary Josephson junctions”, Phys. Rev. Lett. 64, 228 (1990).
[56] S.-C. Chung, C.-I. Chen, P.-C. Tseng, H.-F. Lin, T.-E. Dann, Y.-F. Song, L.-R. Huang, C.-C. Chen, J.-M. Chuang, K.-L. Tsang, and C.-N. Chang, “Soft x-ray spectroscopy beamline 6 m high energy spherical grating monochromator at SRRC: optical design and first performance tests”, Rev. Sci. Instrum. 66, 1655 (1995).
[57] J. M. Chen, S. C. Chung, and R. S. Liu, “High-resolution x-ray absorption near edge structure studies of monophasic Tl2Ba2Ca2Cu3O10-δ (Tl-2223) superconductor”, Solid State Commun. 99, 493 (1996).
[58] S. Eisebitt, T. Böske, J.-E. Rubensson, and W. Eberhardt, “Determination of absorption coefficients for concentrated samples by fluorescence detection”, Phys. Rev. B 47, 14103 (1993).
[59] J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).
[60] W. M. Temmerman, Z. Szotek, and G. Y. Guo, “A local spin-density study of antiferromagnetism in La2CuO4 and YBa2Cu3O6”, J. Phys. C 21, L867 (1988).
[61] N. Nücker, E. Pellegrin, P. Schweiss, J. Fink, S. L. Molodtsov, C. T. Simmons, G. Kaindl, W. Frentrup, A. Erb, and G. Müller-Vogt, “Site-specific and doping-dependent electronic structure of YBa2Cu3Ox probed by O 1s and Cu 2p x-ray-absorption spectroscopy”, Phys. Rev. B 51, 8529 (1995).
[62] F. C. Zhang and T. M. Rice, “Effective Hamiltonian for the superconducting Cu oxides”, Phys. Rev. B 37, 3759 (1988).
[63] J. Zaanen, M. Alouani, and O. Jepsen, “X-ray absorption of YBa2Cu3O7 : a band picture”, Phys. Rev. B 40, 837 (1989).
[64] C. W. Luo, M. H. Chen, S. J. Liu, K. H. Wu, J. Y. Juang, T. M. Uen, J.-Y. Lin J.-M. Chen, and Y. S. Gou, “Anisotropic electronic structure of in-plane aligned a-axis YBa2Cu3O7-δ thin films”, J. Appl. Phys. 94, 3648 (2003).
[65] S. J. Liu, J. Y. Juang, K. H. Wu, T. M. Uen, Y. S. Gou, J. M. Chen, and J.-Y. Lin, “Soft x-ray absorption spectroscopy studies of (110) YBa2Cu3O6.9 thin film”, J. Appl. Phys. 93, 2834 (2003).
[66] P. Horowitz and W. Hill, “The art of electronics”, 2nd edition, Combridge, New York, (1989).
[67] M. Born and E. Wolf, “Principles of optics-electromagnetic theory of propagation, interference and diffraction of light”, 7nd edition, Combridge (1999).
[68] J.-C. Diels and W. Rudolph, “Ultrashort laser pulse phenomena”, Academic Press (1995).
[69] H. J. Eichler, D. Langhans and F. Massmann, “Coherence peaks in picosecond sampling experiments”, Opt. Commun. 50, 117 (1984).
[70] C. Rullière, “Fig. 9.13” in Femtosecond laser pulses: principles and experiments, 278 Springer-Verlag (1998).
[71] Z. Vardeny and J. Tauc, “Picosecond coherence coupling in the pump and probe technique”, Opt. Commun. 39, 396 (1981).
[72] C. H. Brito Cruz, J. P. Gordon, P. C. Becker, R. L. Fork and C. V. Shank, “Dynamics of spectral hole burning”, IEEE J. Quant. Electr. 24, 261 (1988).
[73] M. Joffre, D. Hulin, A. Migus, A. Antonetti, C. Benoit à la Guillaume, N. Peyghambarian, M. Lindberg, and S. W. Koch, “Coherent effects in pump-probe spectroscopy of excitons”, Opt. Lett. 13, 276 (1988).
[74] O. V. Misochko, K. Kisoda, K. Sakai, and S. Nakashima, “Dynamics of low-frequency phonons in the YBa2Cu3O7-x superconductor studied by time- and frequency-domain spectroscopies”, Phys. Rev. B 61, 4305 (2000).
[75] G. P. Segre, N. Gedik, J. Orenstein, D. A. Bonn, Ruixing Liang, and W. N. Hardy, “Photoinduced changes of reflectivity in single crystals of YBa2Cu3O6.5 (ortho II)”, Phys. Rev. Lett. 88, 137001 (2002).
[76] O. Jepsen, D. Glötzel, and A. R. Mackintosh, “Potentials, band structures, and Fermi surfaces in the noble metals”, Phys. Rev. B 23, 2684 (1981).
[77] G. L. Eesley, “Observation of nonequilibrium electron heating in copper”, Phys. Rev. Lett. 51, 2140 (1983).
[78] R. Rosei and D. W. Lynch, “Thermomodulation spectra of Al, Au, and Cu”, Phys. Rev. B 5, 3883 (1972).
[79] R. A. Kaindl, “Ultrafast mid-infrared studies of low-energy excitations in solids”, Dissertation, Humboldt-Universität zu Berlin, Germany (2000).
[80] A. Damascelli, Z. Hussain and Z. X. Shen, “Angle-resolved photoemission studies of the cuprate superconductors”, Rev. Mod. Phys. 75, 473 (2003).
[81] R. Micnas and S. Robaszkiewicz, “Theory aspects of high temperature superconductivity”, in high Tc superconductivity 1996: ten years after the discovery, E. Kaldis, Eliarokapis and K.A. Müller (Eds.), World scientific, Signapore, 31 (1997).
[82] V. J. Emery, “Theory of high-Tc superconductivity in Oxides”, Phys. Rev. Lett. 58, 2794 (1987).
[83] M. B. J. Meinders, H. Eskes, and G. A. Sawatzky, “Spectral-weight transfer: breakdown of low-energy-scale sum rules in correlated systems”, Phys. Rev. B 48, 3916 (1993).
[84] G. Yu, C. H. Lee, D. Mihailovic, A. J. Heeger, C. Fincher, N. Herron, and E. M. McCarron, “Photoconductivity in insulating YBa2Cu3O6+x : from Mott-Hubbard insulator to Fermi glass via oxygen doping”, Phys. Rev. B 48, 7545 (1993).
[85] S. L. Cooper, D. Reznik, A. Kotz, M. A. Karlow, R. Liu, M. V. Klein, W. C. Lee, J. Giapintzakis, D. M. Ginsberg, B. W. Veal, and A. P. Paulikas, “Optical studies of the a-, b-, and c-axis charge dynamics in YBa2Cu3O6+x“, Phys. Rev. B 47, 8233 (1993).
[86] H. Eskes, M. B. J. Meinders and G. A. Sawatzky, “Anomalous transfer of spectral weight in doped strongly correlated systems”, Phys. Rev. Lett. 67, 1035 (1991).
[87] J. Demšar, “Photoexcited carrier relaxation in high temperature superconductors probed by ultrafast optical spectroscopy”, Dissertation, Department of mathematics and physics in Ljubljana university, Slovenia (2000).
[88] S. J. Hagen, Z. Z. Wang, and N. P. Ong, “Anisotropy of the thermal conductivity of YBa2Cu3O7-y”, Phys. Rev. B 40, 9389 (1989).
[89] J. W. Loram, K. A. Mirza, J. R. Cooper, and W. Y. Liang, “Electronic specific heat of YBa2Cu3O6+x from 1.8 to 300 K”, Phys. Rev. Lett. 71, 1740 (1993).
[90] I. M. Fishman, G. S. Kino, X. D. Wu, W. R. Studenmund, A. A. Abrikosov, A. A. Varlamov, and A. I. Buzdin, “Modulation measurements of YBa2Cu3O7-x optical reflectivity using a thermal wave technique”, Physica C 249, 304 (1995).
[91] D. H. Reitze, A. M. Weiner, S. Etemad, A. Inam, and G. Focht, “Temperature dependence of the femtosecond optical response in doped high temperature superconductors”, in SPIE 1861 Ultrafast pulse generation and spectroscopy, 343 (1993).
[92] T. Örd and N. Kristoffel, “Two relaxation times and the high-Tc superconductivity two-component scenario”, Physica C 331, 13 (2000).
[93] V. V. Kabanov, J. Demsar, and D. Mihailovic, “Photoinduced absorption from localized intra-gap states”, Physica C 341, 875 (2000).
[94] A. D. Semenov, G. N. Gol’tsman, I. G. Gogidze, A. V. Sergeev, E. M. Gershenzon, P. T. Lang, and K. F. Renk, “Subnanosecond photoresponse of a YBaCuO thin film to infrared and visible radiation by quasiparticle induced suppression of superconductivity”, Appl. Phys. Lett. 60, 903 (1992).
[95] W. Nessler, S. Ogawa, H. Nagano, H. Petek, J. Shimoyama, Y. Nakayama, and K. Kishio, “Femtosecond time-resolved study of the energy and temperature dependence of hot-electron lifetimes in Bi2Sr2CaCu2O8+δ“, Phys. Rev. Lett. 81, 4480 (1998).
[96] S. V. Chekalin, V. M. Farztdinov, V. V. Golovlyov, V. S. Letokhov, Yu. E. Lozovik, Yu. A. Matveets, and A. G. Stepanov, “Femtosecond spectroscopy of YBa2Cu3O7-δ: electron-phonon-interaction measurement and energy-gap observation”, Phys. Rev. Lett. 67, 3860 (1991).
[97] C. J. Stevens, D. Smith, C. Chen, J. F. Ryan, B. Podobnik, D. Mihailovic, G. A.Wagner, and J. E. Evetts, “Evidence for two-component high-temperature superconductivity in the femtosecond optical response of YBa2Cu3O7-δ“, Phys. Rev. Lett. 78, 2212 (1997).
[98] C.W. Luo, M. H. Chen, C. C. Chiu, S. P. Chen, K. H. Wu, J.-Y. Lin, J. Y. Juang, T. M. Uen, and Y. S. Gou, “Anisotropic photoexcited carrier dynamics in (100)-, (001)-, and (110)-oriented YBCO films by polarized ultrafast optical spectroscopy”, J. Low Temp. Phys., 131, 767 (2003).
[99] Y. Y. Hao, “Studies of the metal-insulator transition in cuprates”, Master thesis, National Chiao Tung University, Taiwan, R.O.C., (1999).
[100] N. M. Plakida, “High-temperature superconductivity”, Springer, Berlin (1995).
[101] G. Deutscher, “Coherence and single-particle excitations in the high-temperature superconductors”, Nature 397, 410 (1999).
[102] I. Maggio-Aprile, Ch. Renner, A. Erb, E. Walker, and Ø. Fischer, “Direct vortex lattice imaging and tunneling spectroscopy of flux lines on YBa2Cu3O7-δ“, Phys. Rev. Lett. 75, 2754 (1995).
[103] C. Panagopoulos, J. R. Cooper, and T. Xiang, “Systematic behavior of the in-plane penetration depth in d-wave cuprates”, Phys. Rev. B 57, 13422 (1998).
[104] Y. S. Gou, H. K. Zeng, J. Y. Juang, J. Y. Lin, K. H. Wu, T. M. Uen, and H. C. Li, “Determination of the doping dependence of the penetration depth using YBCO microstrip ring resonators”, Physica C 364, 408 (2001).
[105] V. J. Emery, S. A. Kivelson, and H. Q. Lin, “Phase separation in the t-J model”, Phys. Rev. Lett. 64, 475 (1990).
[106] Y. N. Ovchinnikov, S. A. Wolf, and V. Z. Kresin, “Intrinsic inhomogeneities in superconductors and the pseudogap phenomenon“, Phys. Rev. B 63, 064524 (2001).
[107] B. V. Fine, “Hypothesis of two-dimensional stripe arrangement and its implications for the superconductivity in high-Tc cuprates“, Cond-mat/0308428 v1, (2003).
[108] D. Mihailovic, B. Podobnik, J. Demsar, G. Wagner, and J. Evetts, “Divergence of the quasiparticle lifetime with doping and evidence for pre-formed pairs below T* in YBa2Cu3O7-δ direct measurements by femtosecond time-resolved spectroscopy”, J. Phys. Chem. Solids 59, 1937 (1998).
[109] J. M. Chwalek, C. Uher, J. F. Whitaker, G. A. Mourou, and J. A. Agostinelli, “Subpicosecond time-resolved studies of coherent phonon oscillations in thin-film YBa2Cu3O6+x (x<0.4)”, Appl. Phys. Lett. 58, 980 (1991).
[110] W. Albrecht, Th. Kruse, and H. Kurz, “Time-resolved observation of coherent phonons in superconducting YBa2Cu3O7-δ thin films”, Phys. Rev. Lett. 69, 1451 (1992).
[111] I. I. Mazin, A. I. Liechtenstein, O. Jepsen, O. K. Andersen, and C. O. Rodriguez, “Displacive excitation of coherent phonons in YBa2Cu3O7”, Phys. Rev. B 49, 9210 (1994).
[112] D. N. Langenberg and A. I. Larkin, “Nonequilibrium properties of superconductors (transport equation approach)”, in Nonequilibrium Superconductivity, Elsevier Science Publishers B. V., Netherlands, 326 (1986).
[113] See for example M. Tinkham, “Introduction to superconductivity”, Second edition, McGraw-Hill, 63 (1996).
[114] A. G. Aronov and B. Z. Spivak, “Nonequilibrium distributions in superconductors”, J. Low Temp. Phys. 29, 149 (1977).
[115] A. G. Aronov, M. A. Zelikman, and B. Z. Spivak, “Nonequilibrium excitation in superconductors and phonon fluorescence”, Sov. Phys. Solid State 18, 1286 (1976).
[116] R. Buhleier, S. D. Brorson, I. E. Trofimov, J. O. White, H.-U. Habermeier, and J. Kuhl, “Anomalous behavior of the complex conductivity of Y1-xPrxBa2Cu3O7 observed with THz spectroscopy”, Phys. Rev. B 50, 9672 (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔