(3.80.6.131) 您好!臺灣時間:2021/05/14 02:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李政璋
研究生(外文):Lee, Cheng-Chang
論文名稱:新式表面粗糙化製程及其在微結構抗沾黏之研究
論文名稱(外文):New Modification Processes on Surface Roughness and Their Application to Anti-stiction
指導教授:徐文祥徐文祥引用關係
指導教授(外文):Hsu, Wensyang
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:英文
論文頁數:106
中文關鍵詞:表面粗糙化活性離子蝕刻沾黏光阻微機電微結構
外文關鍵詞:surface modificationRIEstictionphotoresistMEMSmicrostructure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:486
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
在過去研究中,為因應各種不同的應用,已有許多表面粗糙化製程被提出。然而,粗糙化的方法通常是針對某些材料而發展,特別是矽基的材料,有些則有特殊的製程或性質需求。
在此研究中,我們提出了兩種可應用於大部分材料的粗糙化製程:其一是利用光阻塗佈加上活性離子蝕刻;其二是利用光阻及兩階段的蝕刻製程所成的方法。兩個粗糙化方法皆為低溫製程,而且沒有材料性質的限制,也不需額外的光罩,因此將可輕易地將粗糙化製程整合到原本的微元件製程中。在此研究中,粗糙化鎖定在降低微結構沾黏的應用上,而且為了達到抗沾黏的效果,相關的粗糙化製程參數亦被提出。從實驗結果發現,相較於未受粗糙化製程的表面,使用第一個方法可增加2倍長的懸臂樑長度,而使用第二個方法最多可達到2.6倍的長度。除此之外,兩個粗糙化方法亦可分別藉由水接觸角及表面粗糙度的量測,來更簡易地確定粗糙化時間。
Many processes about modification on surface roughness have been developed previously for various applications. However, the modified materials in the previously reported methods were designed for specific materials, especially for silicon-type materials, and some had the particular requirements.
Here, two methods that can apply surface roughness modification to most materials of MEMS are proposed. One is to combine spin-on photoresist and one-step RIE, and the other is to use spin-on photoresist and two-step etching processes. Both are the low temperature processes, and they have no special requirement for material properties and no extra mask is needed. Therefore, there is more flexibility to add the modification to the original fabrication processes of the microdevices. In this study, the modified surfaces are used to alleviate stiction of microstructures, and the related recipes are developed for the anti-stiction application. According to characterization results with the cantilever beam array (CBA), the method with one-step RIE can obtain about 2 times longer detachment lengths than those without the modified substrate, and the other method is 2.6 times longer. Besides, the other simpler strategies, measuring water contact angles and surface roughness, are used to determine the proper modification time of the two methods, respectively.
Abstract in Chinese i
Abstract in English ii
Acknowledgements iii
List of Figures vii
List of Tables xii
Chapter 1. INTRODUCTION
1.1 Motivation 1
1.2 Paper Reviews 3
1.3 Current Approaches 13
Chapter 2. MODIFICATION ON PHOTORESIST SURFACE
2.1 Introduction 17
2.2 Modifying Photoresist Surface 19
2.3 Roughening Principle 23
2.4 Survey of Etching Recipes 26
Chapter 3. SURFACE MODIFICATION WITH ONE-STEP RIE PROCESS
3.1 Introduction 30
3.2 Modification Processes 31
3.3 Characterization 38
3.4 Results and Discussions 42
3.5 Summary 48
Chapter 4. SURFACE MODIFICATION WITH TWO-STEP ETCHING PROCESSES
4.1 Introduction 50
4.2 Modification Processes 52
4.3 Formation of the Photoresist Patterns 55
4.4 Surface Modification on the Target Material 58
4.5 Application to Anti-stiction and Discussions 64
4.6 Summary 69
Chapter 5. OPTIMIZATION OF AN ELECTRO-THERMALLY AND LATERALLY DRIVEN MICROACTUATOR
5.1 Introduction 71
5.2 Concept Design 72
5.3 Finite Element Modeling 74
5.4 Fabrication Processes and Results 78
5.5 Testing Results 82
5.6 Summary 86
Chapter 6. DISCUSSIONS
6.1 Comparisons 88
6.2 Surface Modification on Selected Regions 93
Chapter 7. CONCLUSIONS
7.1 Summary 96
7.2 Future Work 99
Reference 100
個人基本資料及研究成果 106
1. Hynes, A. M., Ashraf, K., Bhardwaj, J. K., Hopkins, J., Johnston, I., and Shepherd, “Recent advances in silicon etching for MEMS using the ASETM process”, Sensors Actuators A 74, pp.13-17, 1999
2. Lorenz, H., Despont, M., LaBianca, N., Renaud, P., and Vettiger, P., “Su-8: a low cost negative resist for MEMS”, J. Micromech. Microeng. 7, pp.121-124, 1997
3. http://www.suss.com/
4. Lysko, M., Stolarski, E., and Jachowicz, R. S., “Capacitive silicon pressure sensor based on the one-side wafer processing”, Transducer ’91, pp.685-688, 1991
5. Kung, J. T. and Lee, H. S., “An integrated air-gap capacitor process for sensor applications”, Transducer ’91, pp.312-314, 1991
6. Ristic, L., Gutteridge, R., Dunn, B., Mietus, D., and Bennett, P., “Surface micromachined polysilicon accelerometer”, Int. Workshop on Solid-State Sensors and Actuators, pp.118-121, 1992
7. Lee, S., Motamedi, E., and Wu, M. C., “Surface-micromachined free-space fiber optic switches with integrated microactuators for optical fiber communication systems”, Transducer ’97, pp.85-87, 1997
8. Pan, C. S. and Hsu, W., “An electro-thermally and laterally driven polysilicon microactuator”, J. Micromech. Microeng. 7, pp.7-13, 1997
9. Kessel, P. F., Hornbeck, L. J., Meier, R. E., and Douglass, M. R., “A MEMS-based projection display”, Proceedings of the IEEE, 86 (8), pp.1687-1704, 1998
10. Maboudian, R. and Howe, R. T., “Critical review: adhesion in surface micromechanical structures”, J. Vac. Sci. Technol. B 15(1), pp.1-20, 1997
11. Yee, Y., Chun, K., Lee, J. D. and Kim, C-J., “Polysilicon surface-modification technique to reduce sticking of microstructures”, Sensors Actuators A 52, pp.145-150, 1996
12. Alley, R. L., Mai, P., Komvopoulos, K. and Howe, R. T., “Surface roughness modification of interfacial contacts in polysilicon microstructures”, 7th Int. Conf. Solid-State Sensors and Actuators, Transducer ’93 (Yokohama Japan), pp 288-291, 1993
13. Yee, Y., Chun, K., Lee, J. D. and Kim, C-J., “Polysilicon surface-modification technique to reduce sticking of microstructures”, Sensors Actuators A 52, pp.145-150, 1996
14. Matsumoto, Y., Shimada, T., and Ishida, M., “Novel prevention method of stiction using silicon anodization for SOI structure”, Sensors Actuators A 72, pp.153-159, 1999
15. Fujitsuka, N. and Sakata, J., “A new processing technique to prevent stiction using silicon selective etching for SOI-MEMS”, 11th Int. Conf. Solid-State Sensors and Actuators, Transducers ’01, Munich, Germany, pp.628-631, 2001
16. 張智松、蔡宗良、張中英,半導體發光元件及其製造方法,台灣專利公告號: 461122,公告日期: 2002, 01, 11
17. Gittleman, J. I. and Sichel, E. K., “Textured silicon: a selective absorber for solar thermal conversion”, Appl. Phys. Lett. 35(10), pp.742-744, 1979
18. Graighead, H. G., Howard, R. E., and Tenant, D. M., “Textured thin-film Si solar selective absorbers using reactive ion etching”, Appl. Phys. Lett. 37(7), pp.653-655, 1980
19. Graighead, H. G., Howard, R. E., and Tenant, D. M., “Selectively emissive refractory metal surfaces”, Appl. Phys. Lett. 38(2), pp.74-76, 1981
20. Inomata, Y., Fukui, K., and Shirasawa, K., ”Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method”, Solar Energy Materials and Solar Cells, 48, pp.237-242, 1997
21. Schnell, M., Ludermann, R., and Schaefer, S., “Plasma surface texturization for multicrystalline silicon solar cells”, Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, Anchorage, AK, USA, pp.367-370, 2000
22. Jansen, H., de Boer, M., and Elwenspoek, M., “The black silicon method VI high aspect ratio trench etching for mems applications”, The Ninth Annual International Workshop on Micro Electro Mechanical Systems, (MEMS ''96) San Diego, CA, USA, pp.250-257, 1996
23. Yee, Y., Yu, S., Chun, K., and Lee, J. D., “The novel capacitor structure with polysilicon grain hole for advanced dynamic random access memory”, Jpn. J. Appl. Phys. 33, pp.578-580, 1994
24. Guckel, H., Saniegowski, J. J. and Christenson, T. R., “Advance in processing techniques for silicon micromechanical devices with smooth surfaces”, Proc. IEEE Micro Electro Mechanical Systems (Salt Lake City, UT), pp71-75, 1989
25. Mulhern, G. T., Soane, D. S. and Howe, R. T., “Supercritical carbon dioxide drying of microstructures”, 7th Int. Conf. Solid-State Sensors and Actuators, Transducer ’93 (Yokohama Japan), pp 296-299, 1993
26. Lee, J. H., Jang, W. I., Lee, C. S., Lee, Y. I., Choi, C. A., Baek, J. T. and Yoo, H. J., “Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal”, Sensors Actuators A 64, pp.27-32, 1998
27. Abe, T., Messner, W. C. and Reed, M. L., “Effects of elevated temperature treatments in microstructure release procedures”, J. Microelectromechanical System 4(2), pp.66-75, 1995
28. Kobayashi, D., Kim, C-J. and Fujita, H., “Photoresist-assisted release of movable microstructures”, Jpn. J Appl. Phys. 32, pp.1642-1644, 1993
29. Mastrangelo, C. H. and Saloka, G. S., “A dry-release method based in polymer columns for microstructure fabrication”, Proc. IEEE Micro Electro Mechanical Systems (Fort Lauderdale, Florida), pp 77-81, 1993
30. Kozlowski, F., Lindmair, N., Scheiter, T., Hierold, C. and Lang, W., “A noval method to avoid sticking of surface-micromachined structures”, Sensors Actuators A 54, pp.659-662, 1996
31. Benitez, M. A., Plaza, J. A., Sheng, S. Q. and Esteve, J., “A new process for releasing micromechanical structures in surface micromachining”, J. Micromech. Microeng. 6, pp.36-38, 1996
32. Xiao, Z., Hao, Y., Li, T., Zhang, G., Liu, S. and Wu, G., “A new release process for polysilicon surface micromachining using sacrificial polysilicon anchor and photolithography after sacrificial etching”, J. Micromech. Microeng. 9, pp.300-304, 1999
33. Abe, T., Messner, W. C. and Reed, M. L., “Effective methods to prevent stiction during post-release-etch processing”, Proc. IEEE Micro Electro Mechanical Systems (Amsterdam, Netherlands), pp94-99, 1995
34. Houston, M. R., Maboudian, R. and Howe, R. T., “Ammonium fluoride antistiction treatments for polysilicon microstructures”, 8th Int. Conf. Solid-State Sensors and Actuators, Transducer ’95 (Stockholm, Sweden), pp 210-213, 1995
35. Man, P. F., Gogoi, B. P. and Mastrangelo, C. H., “Elimination of post-release adhesion in microstructures using conformal fluorocarbon coatings”, J. Microelectromechanical System 6(1), pp.25-34, 1997
36. Smith, B. K., Sniegowski, J. J., Vigne, G. L. and Brown, C., “Thin Teflon-like films for eliminating adhesion in released polysilicon microstructures”, Sensors Actuators A 70, pp.159-163, 1998
37. Matsumoto, Y., Yoshida, K. and Ishida, M., “A novel deposition technique for fluorocarbon films and its applications for bulk- and surface- micromachined devices”, Sensors Actuators A 66, pp.308-314, 1998
38. Matsumoto, Y. and Ishida, M., “The property of plasma polymerized fluorocarbon film in relation to CH4/C4F8 ratio and substrate temperature”, 10th Int. Conf. Solid-State Sensors and Actuators, Transducer ’99, pp.34-37, 1999
39. Srinivasan, U., Houston, M. R. and Howe, R. T., “Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines”, J. Microelectromechanical System 7(2), pp.252-260, 1998
40. Maboudian, R., Ashurst, W. R. and Carraro, C., “Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments”, Sensors Actuators A 82, pp.219-223, 2000
41. Ashurst, W. R., Yau, C., Carraro, C., Lee, C., Kluth, G. J., Howe, R. T. and Maboudian, R., “Alkene based monolayer films as anti-stiction coatings for polysilicon MEMS”, Sensors Actuators A 91, pp.239-248, 2001
42. Kim, B. H., Chung, T. D., Oh, C. H. and Chun, K., “A new organic modifier for anti-stiction”, J. Microelectromechanical System 10(1), pp.33-40, 2001
43. Mastrangelo, C. H. and Hsu, C. H., “A simple experimental technique for the measurement of the work of adhesion of microstructures”, Proc. Solid-State Sensor Actuator Workshop (Hilton Head, SC), pp.208-212, 1992
44. Guckel, H., Klein, J., Christen, T., Skrobis, K., Landon, M., and Lovell, E. G., “Thermo-magnetic metal flexure actuators”, Technical Digest, IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, pp.73-75, 1992
45. Bhardwaj, J., Ashraf, H., and McQuarrie, A., “Dry silicon etching for MEMS”, The Symposium on Microstructures and Microfabricated Systems at the Annual Meeting of the Electrochemical Society, Montreal, Quebec, Canada, pp.1-13, 1997
46. Syau, T., Baligo, B. J., and Hamaker, R. W., “Reactive Ion Etching of Silicon Trenches Using SF6/O2 Gas Mixtures”, J. Electrochemical Society, vol.138, no.10, pp.3076-3081, 1991
47. Plummer, J. D., Deal, M., and Griggin, “Silicon VLSI Technology: fundamentals, practive and modeling”, Prentice Hall, 2000
48. 龔文安,積體電路微影製程,高立出版社,民國87年
49. Wolf, S. and Tauber, R. N., “Silicon processing for the VLSI ERA volume 1: process technology”, Lattice Press, 1986
50. Adamson, A. W., “Physical Chemistry of Surfaces”, 5th ed., Wiley, New York, 1990
51. Rossiter, B. W. and Baetzold, R. C., “Physical Methods of Chemistry, Part A”, 2nd ed., Wiley, New York, 1993
52. Storment, C. W., Borkholder, D. A., Suh, J. W., and Maluf, N. I., “Flexible dry-released process for aluminum electrostatic actuators”, J. Microelectromechanical System 3(3), pp.90-96, 1994
53. Shin, J., Chung, S., Kim, Y., and Choi, B., “Design and fabrication of micromirror array supported by vertical springs”, Sensors Actuators A 66, pp.144-149, 1998
54. van Kessel, P. F., Hornbeck, L. J., Meier, R. E., and Douglass, M. R., “A mems-based projection display”, Proceedings of the IEEE 86(8), pp.1687-1704, 1998
55. Chung, S., Shin, J., Kim, Y., and Han, B., “Design and fabrication of micromirror supported by electroplated nickel posts”, Sensors Actuators A 54, pp.464-467, 1996
56. Legtenberg, R., Jansen, H., de Boer, M., and Elwenspoek, M., “Anisotropic reactive ion etching of silicon using SF6/O2/CHF3 gas mixtures”, J. Electrochem. Soc. 142(6), pp.2020-2028, 1995
57. Bustgens, B., “Micromembrane Pump Manufactured by Molding”, Proc. of Int. Conf. On New Actuators, Bremen, pp.86-90, 1994
58. Field, L. A., Burriesci, D. L., Robrish, P. R., and Ruby, R. C., “Micromachined 1×2 Optical Fiber Switch”, Sensors and Actuators, A53, pp311-315, 1996
59. Krause, P., Obermeier, E., and Wehl, W., “A Micromachined Single-Chip Inkjet Printhead”, Sensors and Actuators, A53, pp405-409, 1996
60. Guckel, H., Klein, J., Christen, T., Skrobis, K., Landon, M., and Lovell, E. G., “Thermo-magnetic metal flexure actuators”, Technical Digest, IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, pp.73-75, 1992
61. Comtois, J. H. and Bright, V. M., “Applications for surface-micromachined polysilicon thermal actuators and arrays”, Sensors and Actuators, A58, pp.19-25, 1997
62. Comtois, J. H., Michalicek, M. A., and Barron, C. C., “Electrothermal actuators fabricated in four-level planarized surface micromachined polycrystalline silicon”, Sensors and Actuators, A70, pp.23-31, 1998
63. Huang, Q. and Lee, N. K., “Analysis and design of polysilicon thermal flexure actuator”, J. Micromech. Microeng., 9, pp.64-70, 1999
64. Koester, D., Mahedevan, R., and Marcus, K., “Multi-User MEMS Processes (MUMPs) Intruduction and Design Rules”, Rev.3, MCNC MEMS Technology Applications Center, Research Triangle Park, NC, USA, 1994
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔