(3.238.96.184) 您好!臺灣時間:2021/05/18 14:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳文億
研究生(外文):Wen-Yi Chen
論文名稱:環氧樹脂難燃特性及低介電性質之研究
論文名稱(外文):Studies on Flame Retardation and Low Dielectric Properties Based on Epoxy Resin
指導教授:張豐志
指導教授(外文):Feng-Chih Chang
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:159
中文關鍵詞:Flame RetardantEpoxy ResinPOSSLow Dielectric Constant
外文關鍵詞:難燃環氧樹脂多面體倍半矽氧烷寡聚物低介電常數
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1307
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在電子產業中,環氧樹脂廣泛用於印刷電路板及封裝材料,但與其他種類的高分子一樣皆具有易燃之特性。且應用於封裝及印刷電路板的材料均須具備低介電的特性。故本論文分為兩大部分:一為環氧樹脂之難燃化,其為利用三聚氰胺磷酸脂(MP)作為環氧樹脂硬化劑以形成反應型且具難燃特性之環氧樹脂。另一為低介電環氧樹脂之研究,係以多面體倍半矽氧烷寡聚物(POSS)為主體,而合成一系列衍生物,將這些衍生物以添加方式或直接導入環氧樹脂的骨幹,進而降低環氧樹脂之介電性質。
在環氧樹脂難燃化方面,本研究利用容易製作及低成本之三聚氰胺磷酸脂作為硬化劑。為證明環氧樹脂與三聚氰胺磷酸脂為一反應型的型態結合,利用微分掃描熱卡計(DSC)作為研究交聯動力學之儀器。在動態及恆溫交聯動力學上可得知本系統需較高溫(200℃)及較長交聯時間(2hr)。而在反應機構方面,係利用傅立葉紅外線光譜儀(FTIR)及固態碳譜核磁共振儀(13C Solid-State NMR)去鑑定其反應機構,經由圖譜得知環氧樹脂與三聚氰胺磷酸脂具有環氧樹脂-胺(epoxy-amine)、乙醚化(Etherification)、脫水(Dehydration)及熱氧化(Thermal Oxidation)等反應。其熱性質方面,本研究以環氧樹脂與對苯二胺(DDM)交聯高分子作為標準物,含三聚氰胺磷酸脂之環氧樹脂之玻璃轉移溫度高於標準物,在裂解溫度上和一般含磷難燃環氧樹脂皆在低溫裂解。在難燃特性上,以極限含氧量(LOI)來評估難燃特性,由於樣品經測試後會有膨脹現象,根據文獻,三聚氰胺磷酸脂在加熱過程中會產生氮氣、P2O5及(POx)n等物質所形成的緻密玻璃層覆蓋在基材上面,且發現在磷含量5%時其LOI高達34。由此證明三聚氰胺磷酸脂是一個相當好的難燃劑。
在低介電環氧樹脂之研究方面,以合成具有8個環氧基之多面體倍半矽氧烷寡聚物(OG),及另一具有8個含氟原子基之多面體倍半矽氧烷寡聚物(OF),將此兩個化合物分別加入光交聯之環氧樹脂中,並以DSC,TGA,DMA等儀器來評估其熱性質,另一方面則利用DEA來測定介電值。在OG部分,因其具有環氧基而可和光起始劑在紫外光線下交聯形成奈米級之環氧樹脂。OG本身具有8個環氧基增加交聯後環氧樹脂之交聯密度進而增加其玻璃轉移溫度及裂解溫度,在介電性質上,未含OG之環氧樹脂介電值為3.71,因為OG具有中空的結構可有效降低環氧樹脂之介電常數(2.85)。在OF部分,由於OF的結構具有含氟及中空的結構結合這兩個重要降低介電常數的因素希望能比OG更能降低環氧樹脂之介電值。但在熱性質上由於OF不能與環氧樹脂進一步反應,所以在熱性質均低於未添加OF環氧樹脂,在介電性質上,因為OF具有含氟及中空的結構更能有效降低環氧樹脂之介電常數(2.65)。
In an electronic industrial, epoxy resin was widely applied in PCB procession and as a packaging material. Like most organic polymeric materials, the easy flammable property of epoxy resin limits its application in some areas. The requirement for a low dielectric constant is present in PCB and packaging area. In this investigation there are two major topics: one is concerning with the flame retardation of epoxy resin, where melamine phosphate (MP) was used as a hardener to improve the flame retardability of epoxy resin. The other is using an epoxy resin with functional groups that possessed low dielectric constant. In this part, polyhedral oligomeric silsesquioxanes (POSS) act as a core material. The surface material is prepared by the reaction of either allyl glycidyl ether (AGE) or allyl 1,1,2,3,3,3-hexafluoropropyl ether (AHFPE) to form octakis(dimethylsiloxypropylglycidyl ether) silsesquioxane (OG) and octakis(dimethylsiloxyhexafluoropropyl ether) silsesquioxane (OF), respectively. The OG is incorporated into the backbone of the UV-cured epoxy resin and the OF is directly mixed into the UV-cured epoxy resin. Both kinds of modifications are expected to decrease the dielectric constant of epoxy resin.
In part of improving flame retardation of epoxy resin, melamine phosphate will be used as an easy-cast- and low-cost hardener. Confirming this system is a reactive type of flame retardant for epoxy resin. The curing kinetics is to be studied by DSC. The dynamic and isothermal curing kinetics results show that this system need higher curing temperature (200℃) and longer curing time (2hr). The FTIR and 13C solid-state NMR will be used to characterize the curing mechanism of the epoxy cured with MP. The FITR and NMR spectra results show that the curing mechanism included epoxide-amine reaction, etherification, dehydration, and thermal oxidation.
In thermal properties, cured sample by DGEBA and 4,4’-diaminodiphenylmethane (DDM) is used as the standard sample. The values of Tg of epoxy cured with MP are higher than that of the standard sample due to the rigid and bulky structure of MP. For decomposition temperature (Tdec), the epoxy cured with MP has a lower decomposition temperature and it occurred in other phosphorylated epoxy resins. In flame retardation, the LOI was applied to determine flame retardability of epoxy resin. Some papers reported that melamine phosphate converted to nitrogen, P2O5, and (POx)n complex upon heating. These complex formed intumescent film to protect the matrix from further combustion. The value of LOI is 34 for 5% phosphoric. Thus, the melamine phosphate is an excellent reactive-type flame retardant for epoxy resins.
In reducing dielectric constant for epoxy resin, we synthesized two nano-structure compounds. One is containing octa-epoxy group POSS derivative (OG) and the other is a POSS derivative with octa-fluoride containing group (OF). The thermal properties were characterized using DSC, TGA, and DMA. The dielectric constant was characterized using DEA.
In OG part, OG was incorporated into the backbone of the epoxy mixture through UV curing. The OG containing epoxy resin has higher the vales of Tg and Tdec due to the high crosslinking density of OG that possesses multi-epoxy group. In dielectric properties, the dielectric constant of UV-cured epoxy resin is 3.71. The dielectric constant of OG containing epoxy resin is 2.85. Due to the presence of these nanoporous cubic POSS particles within the epoxy matrix the dielectric constant is smaller.
In OF part, we synthesized OF, which possesses nanoporous and fluorine structure to decrease the dielectric constant of epoxy resin. The dielectric constant of OG containing epoxy resin is 2.65 under the same POSS particles. Due to OF that possesses nanoporous and fluorine structure, it has a high efficiency to decrease the dielectric constant of epoxy resin compared to OG.
Outline of Contents
Pages
Acknowledgments
Outline of Contents I
List of Tables VI
List of Figures VII
List of Schemes X
Abstract (in Chinese) 1
Abstract (in English) 4
Chapter 1 Introduction to Flame Retardation of Epoxy Resin
1-1 Principle of Flame Retardation of Polymer 7
1-1-1 Principle of Flame Retardant 7
1-1-2 The Types of Flame Retardants 10
1-1-3 Important Factors of Flame Retardants 10
1-2 Evaluation of Flame Retardation of Polymer 11
1-2-1 Limiting Oxygen Index (LOI) 11
1-3 Reference Review 11
References 14
Chapter 2 Introduction to Low Dielectric Property Based on POSS
2-1 Introduction to POSS Technology 18
2-1-1 Background of POSS 18
2-1-2 Anatomy of POSS Chemicals 18
2-1-3 Property Enhancements Via POSS 19
2-1-4 POSS Polymer Systems 19
2-1-5 POSS Chemical Tree 20
2-2 Low Dielectric Constant of Polymer 20
2-2-1 RC Delay 20
2-2-2 Dielectric Constant and Bonding Characteristics 21
2-2-3 Porous Low-k materials 22
2-3 Reference Review 22
References 25
Chapter 3 Study on Curing Kinetics and Curing Mechanism of Epoxy Resin Based on Diglycidyl Ether of Bisphenol A and Melamine Phosphate
Abstract 31
3-1 Introduction 32
3-2 Experimental 35 3-2-1 Materials 35
3-2-2 Dynamic-curing kinetics 35
3-2-3 Isothermal-curing kinetics 35
3-2-4 Characterizations 35 3-3 Results and Discussion 37
3-3-1 Dynamic kinetics 37
3-3-2 Isothermal kinetics 37
3-3-3 Curing mechanism 39
3-4 Conclusions 41
References 42
Chapter 4 Thermal and Flame Retardation Properties of Melamine Phosphate Modified Epoxy Resins
Abstract 60
4-1 Introduction 61
4-2 Experimental 62
4-2-1 Materials 62
4-2-2 Sample Preparation 62
4-2-3 Characterizations 62
4-3 Results and Discussion 65
4-3-1 Synthesis of Sample of the DGEBA-MP System 65
4-3-2 Glass Transition Temperature 66
4-3-4 Thermal Stability 66
4-3-5 Flame Retardation 68
4-3-6 Morphology 69
4-4 Conclusions 71
References 72
Chapter 5 High Thermal Properties and Low Dielectric Constant of UV-Curd Polyhedral Oilgomeric Silisesquioxane Nanocomposite Based on Epoxy Resin
Abstract 88
5-1 Introduction 89
5-2 Experimental 92
5-2-1 Materials 92
5-2-2 Octakis(dimethylsiloxypropylglycidyl ether)silsesquioxane (OG) 92
5-2-3 Photopolymerization 92
5-2-4 Characterizations 93
5-3 Results and Discussion 94
5-3-1 Synthesis of OG 94
5-3-2 Glass Transition Temperature 94
5-3-3 Thermal Stability 96
5-3-4 Dielectric property 96
5-3-5 Morphology 97
5-4 Conclusions 98
References 99
Chapter 6 Thermal and Dielectric Properties and Curing Kinetics of Nanomaterial Based on POSS-Epoxy with Meta-Phenyldiamine
Abstract 110
6-1 Introduction 111
6-2 Experimental 112
6-2-1 Materials 112
6-2-2 Sample Preparations 112
6-2-3 Cured Sample Preparations 112
6-2-4 Dynamic Curing Kinetics 112
6-2-5 Isothermal Curing Kinetics 113
6-2-6 Characterizations 113
6-3 Results and Discussion 114
6-3-1 Dynamic Kinetics 114
6-3-2 Isothermal Curing Kinetics 116
6-3-3 Curing Process 117
6-3-4 Glass Transition Temperature 118
6-3-5 Thermal Stability 119
6-3-6 Dielectric constant 119
6-4 Conclusions 120
References 121
Chapter 7 Octa(fluoroalkyl)silsesquioxane as Additives of Epoxy Resin Based Low Dielectric Constant Nanomaterial
Abstract 136
7-1 Introduction 137
7-2 Experimental 139
7-2-1 Materials 139
7-2-2 Octakis(dimethylsiloxyhexafluoropropyl ether)silsesquioxane (OF) 139
7-2-3 Photopolymerization 139
7-2-4 Characterizations 140
7-3 Results and Discussion 141
7-3-1 Octakis(dimethylsiloxyhexafluoropropyl ether)silsesquioxane (OF)
141
7-3-2 Thermal properties of OF 142
7-3-3 Glass Transition temperature of cured samples 142
7-3-4 Thermal Stabilities of cured sample 142
7-3-5 Dielectric constant of cured sample 143
7-4 Conclusions 144
References 145
Chapter 8 Conclusions and Future outlook 156
List of Publications 158
Introduction to Author
Camino, G.; Polym Degrad Stab 1996, 54, 383.
2. Scudamore, M. J. Fire and Materials 1994, 18, 313.
3. Liu, Younian; Su, Wangen; Zeng, Dongming; Huang, Kelong Chinese Journal of Nonferrous Metals 1998, 8, 145.
4. Xiao, W.; He, P.; Hu, G.; He, B. Journal of Fire Sciences 2001, 19, 369.
5. Li, Jianzong; Chen, Shiyuan; Xu, Xiaoming Journal of Applied Polymer Science 1990, 40, 417.
6. Rusch-Salazar, Laura A.; Sheares, Valerie V. J Polym Sci Part A: Polym Chem 2003, 41, 2277.
7. Lum, R. M.; Feinstein, L. G. Microelectronics and Reliability 1981, 21, 15.
8. Shen, Kelvin K. Plastics Compounding, 1985, 8, 10.
9. Levchik, S.V.; Camino, G.; Luda, M.P.; Costa, L.; Muller, G.; Costes, B.; Henry, Y. Polymers for Advanced Technologies 1996, 7, 823.
10. La Rosa, A.D.; Recca, A.; Carter, J.T.; McGrail, P.T. Polymer 1999, 40, 4093.
11. Derouet, D.; Morvan, F.; Brosse, J.C. J Appl Polym Sci 1996, 62, 1855.
12. Levchik, S.V.; Camino, G.; Costa, L.; Luda, M.P. Polym Degrad Stab 1996, 54, 317.
13. Bishop, D. M. ; Bottomley, D.; Zobel, F. G. R. Oil & Colour Chemists'' Assoc 1983, 101.
14. Shieh, Jeng-Yueh; Wang, Chun-Shan J Appl Polym Sci 2000, 78, 1636.
15. Lin, Jung-Fong; Ho, Ching-Fu; Huang, Steve K. J Appl Polym Sci 2000, 77, 719.
16. Kato, Takehiko; Kitano, Motoi; Tomago, Akio National Technical Report 1972, 18, 579.
17. Shen, K. K.; Sprague, R. W. J Fire Retard Chem 1982, 9, 161.
18. Hsieh, Y. -L.; Yeh, K. Polym Sci Techn 1984, 26, 203.
19. Liu, Ying Ling; Chiu, Yie Chan; Wu, Chuan Shao J Appl Polym Sci 2003, 87, 1868.
20. Liu, Ying-Ling; Wu, Chuan-Shao; Chiu, Yie-Shun; Ho, Wen-Hsuan J Polym Sci Part A: Polym Chem 2003, 41, 2354.
21. Liu, Ying Ling J App Polym Sci 2002, 83, 1697.
22. Liu, Ying-Ling; Hsiue, Ging-Ho; Lan, Chih-Wein; Chiu, Yie-Shun Polym Degrad Stab 1997, 56, 291.
23. Wang, Chun Shan; Lin, Ching Hsuan J Appl Polym Sci 1999, 74, 1635.
24. Wang, C.-S.; Lee, M.-C. Polym 2000, 41, 3631.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top