(3.238.235.155) 您好!臺灣時間:2021/05/11 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張章平
研究生(外文):Chang — Ping Chang
論文名稱:聚甲亞胺和改質聚苯烴乙烯衍生物之光學特性比較
論文名稱(外文):Comparisons of Optical Properties for Polyazomethines and Modified Poly(phenylene vinylene)s and Their Application in Chemosensors
指導教授:林木獅謝炳榮
指導教授(外文):Mu-Shih LinBing R. Hsieh
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:260
中文關鍵詞:聚甲亞胺聚苯烴乙烯
外文關鍵詞:PolyazomethinesModified Poly(phenylene vinylene)s
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在於合成聚甲亞胺(Polyazomethines)和聚苯烴乙烯[Poly(phenylene vinylene)s]相關之聚合物與共聚合物,並對合成之共軛聚合物作光學性質探討,及應用到化學感測材料。本研究內容主要分為四章節:
第一章主要藉由含雙胺基及雙醛基之芳香化合物在一定溶劑中進行縮聚合反應,並導入對位-苯基、間位-苯基、間位-三苯基和双咔唑基等不同主鏈及側鏈基團,以設計立體效應及不對稱分子結構,製備一系列共八種可溶性共軛聚甲亞胺衍生物,以利於探討分子結構及光學特性之分析與比較。
第二章部份主要合成以Gilch、Witting及Knoevengal縮聚合,製備六種含硫烷側鏈基團之可溶性間位-及對位-聚苯烴乙烯衍生物之聚合物與共聚合物。其間共軛高分子之共軛長度,可藉由分子結構設計:側鏈含不同推、拉電子取代基,或主鏈之間位、對位連接,造成不同共軛長度之效應,以製備發光之共軛高分子,可發射綠色到橘紅色之螢光。
第三章主要研究是以Knoevenagel 縮合反應分別合成兩個以苯環為中心,兩邊雙鍵之α與β位置,分別導入氰側鏈基團及噻吩基團,形成含有噻吩-氰烴乙烯-苯基團為主體結構之發光共軛分子化合物(α-TPT與β-TPT)。並以AM-1半經驗理論計算α-TPT與β-TPT共軛分子之平面扭曲角度大小,以判斷其共軛長度大小。實驗證實與光學分析實驗結果吻合。再以α-TPT與β-TPT為單體,使用氯化鐵作為觸媒,進行氧化聚合反應,製備含有噻吩-氰烴乙烯-苯基團為主體結構之共聚物(P1與P2)。此共聚物含有噻吩及氰等高電子親和力基團,因此會降低最高電子佔據分子軌域 (HOMO) 與最低電子未佔據分子軌域(LUMO)之間的能隙(energy gap),並會造成螢光放射光譜波長紅位移的現象。由於純共聚物分子堆疊消光(aggregation quenching)及濃度效應(concentration effect)之因素,我們選用α-TPT與β-TPT共軛分子化合物為掺混物(dopant),使之與PMMA及PVK聚合物主基質(host matrix)加以混掺。實驗發現:混掺螢光強度高於純共聚物,其中以1.0 Wt % 之β-TPT混掺於PVK,得到最強螢光強度。
第四章主要以poly[2-methoxy-5-(2-ethylhexyloxy)-p- phenylene- vinylene] (MEH-PPV)、poly(2.3-diphenyl-5- n-decyl-p- phenylene- -vinylene) (DP10-PPV) 與 poly[1-(p- n-butylphenyl)-2-phenylacetylene] (BuPA)三種高螢光特性之可溶性共軛高分子製成薄膜,用來偵測地雷中含三硝基甲苯及二硝基甲苯主要成份的化學感測材料,此三種共軛高分子薄膜對於三硝基甲苯及二硝基甲苯均有相當高的消光敏感性。實驗顯示,只要具有螢光性質之共軛高分子均有可能作為偵測地雷的材料。共軛高分子的消光相對敏感性可分別以被偵檢物之蒸氣壓、共軛高分子與被分析物之間的分子作用力、溶解參數及共軛高分子與被分析物之間HOMO-LUMO相對能階上激子(excitons)能階轉移做合理解釋。
The goal of this research is to study the synthesis and optical properties of aromatic conjugated polyazomethines and poly(p-phenylene vinylene) related homopolymers and copolymers, as well as their application in chemosensors. In chapter one, a series of eight soluble conjugated aromatic polyazomethines containing p-phenylene, m-phenylene, m-terphenylene, 1,2,4-terphenylene and bicarbazylene - linkages in the backbone and various side-group substitutions have been synthesized by solution polycondensation of related aromatic diamines with armotic dialdehydes. These polyazomethines have been characterized and studied to understand the effects of the structure and the photoelectrical property relationship. In chapter two, six alkykthio group containing soluble homopolymers and copolymers of poly(phenylene vinylene) in meta- and para-linkages were synthesized by the Gilch, Witting, Knoevenagel and condensation polymerization. The conjugation lengths of the polymers were adjusted by substitutents and kink linkages. Thus, the photoluminescence spectra of the polymers can be tuned by the kink linkage and substitutent effects, emitting green to orange-red light. In chapter three , cyano substitution at α- and β-positions of light emitting monomers, i.e., 2,5-Bis( 2-thienyl-1-cyanovinyl -1-( 2’-ethylhexyloxy ) -4-methoxybenzene (α-TPT) and 2,5-Bis( 2-thienyl-2-cyanovinyl )-1-( 2’-ethylhexyloxy )-4-methoxybenzene (β-TPT), were synthesized by the Knoevenagel condensation reaction. Two corresponding polymers based onα-TPT andβ-TPT, i.e., poly[2,5-Bis(2-thienyl-1-cyanovinyl)-1- (2’-ethylhexyloxy)-4-methoxybenzene] (P1) and poly[2,5-Bis( 2-thienyl-2-cyanovinyl )-1-( 2’-ethylhexyloxy )-4-methoxy-benzene] ( P2 ) were obtained through FeCl3-oxidative polymerization. Theoretical calculations of the semi-empirical AM-1 level were carried out on model compounds (α-TPT and β-TPT), and the calculated torsion angles are in agreement with the electronic spectra data. The structures and the optical properties of the monomers and polymers were characterized by the FTIR, 1H-NMR, Mass, UV-Vis, and photoluminescence (PL). The thienyl-cyanovinylene-phenylene copolymers (P1and P2) containing high affinity thiophene unit and cyano substituted derivatives in the main chain lower the HOMO-LUMO gap and lead to bathochromic shift in the luminescence emission. Concentration quenching was observed in solid polymer films. Photoluminescence efficiency is strongly enhanced whenα-TPT and β-TPT are blended in a host polymer matrix like poly(N-vinyl carbozole) (PVK) or poly(methyl metacrylate) (PMMA). In addition, the PL intensities for polymer films ( P1 and P2 ) were weaker than the polymer blends; while the PL maximum peak wavelength for polymer films (P1 and P2 ) was red-shifted when compared with the polymer blends.
In chapter four, three prototypical light emitting conjugated polymers, two poly(p-phenylene vinylenes) (MEH-PPV and DP10-PPV) and a poly(diphenylaceylene), were examined for chemosensor applications to detect explosive compounds such as 2,4,6-trinitrotolene (TNT) and 2,4- and 2,6-dinitrotoluene (DNT). All polymer thin films showed high fluorescence quenching sensitivity towards TNT and DNT, indicating that a wide range of emissive conjugated polymers are potentially useful chemosensor materials for detecting landmines. The relative sensitivity of fluorescence quenching of the polymers has been rationalized in terms of the vapor pressure of the analytes, the solubility parameters of the polymers and the analytes, and the relative energy levels of the polymers.
Table of contents
Abstract in Chinese i
Abstract iv
Statement of the Problem……………………………………………….vii
Acknowledgments….. xiii
Talble of contents xiv
List of Schemes v
List of Figures vi
List of Tables……………………………………………………….…..xix
CHAPTER 1 Synthesis and Characterization of New Soluble
Conjugated Aromatic Polyazomethines..…………..1
1.1 ABSTRACT……………………………………………...……………….1
1.2 INTRODUCTION…………………………………………………..........2
1.3 EXPERIMENTAL SECTION……………………..……………………...4
1.3.1 Materials……………………………………..…………………………….4
1.3.2 Preparation of Monomers (1 M ~ 8 M)……………..……………………..5
1.3.3 Preparation of polyazomethines (1P ~ 8P)……………..………………..12
1.3.4 Instrumental Characterization……………………………………...…….26
1.3.5 Preparation of polymer films……………………………….….………....26
1.4 RESULTS AND DISCUSSION………………………….….…………..27
1.4.1 Monomer Synthesis (1 M ~ 8 M)…..………………………..……..…….27
1.4.2 Polymer synthesis..……………………………………………………….33
1.4.3 The thermal properties of Polyazomethines (1P∼8P)…………………...37
1.4.4 Optical Absorption spectra of thin films………………………..………..40
1.4.5 Photoluminescence spectra of thin films………..………………………..47
1.4.6 The Electroluminescence of single layer Polyazomethines devices..……52
1.5 CONCLUSION……………………………………………………….…55
1.6 REFERENCES…………………………………………………………..56
CHAPTER 2 Comparisions of Optical Properties for Kink Linkages and Alkylthio Group Substituents in the Poly (p-phenylene vinylene) Related Polymers and Copolymers………………...58
2.1 ABSTRACT…………………………………………..…………………58
2.2 INTRODUCTION……...……………………………………………..…59
2.3 EXPERIMENTAL SECTION………………...…………………………61
2.3.1 Materials…………...……………………………………………………..61
2.3.2 Monomer synthesis……………………..………………………………..61
2.3.3 Preparation of Polymers……………..…………………………………...64
2.3.4 Instrumental Characterization……………..……………………………..67
2.4 RESULTS AND DISCUSSION……………..…………………………..68
2.4.1 Monomers synthesis and characterization (M1∼M4)……………..…….68
2.4.2 Polymers synthesis and characterization (P1∼P6)……..………………..69
2.4.2.1 The Gilch route polymerization (P1 and P2)…….………………………69
2.4.2.2 The Witting reaction polymerization……….……………………………71
2.4.2.3 The Knoevenagel condensation polymerization………………….……..71
2.4.3 Thermal analysis of polymers…………..………………………………..78
2.4.4 Optical properties………………..……………………………………….79
2.4.4.1 The solvent effect………………………………………………………..84
2.4.4.2 Optical Absorption spectra of thin films of soluble alkylthio Group
Substituents in the PPV related Polymers and Copolymers……………86
2.4.4.3 Influences of Different Conjugation Systems…………………………...90
2.5 CONCLUSSIONS………………………………………………….…...91
2.6 REFERENCES………………………………………………………….92
CHAPTER 3 Synthesis and Optical Properties of Thiophene-containing α- and β- cyano Poly(p-phenylenevinylene) Derivatives....94
3.1 ABSTRACT…………………………………………….………………94
3.2 INTRODUCTION………………………………………...…..…………96
3.3 EXPERIMENTAL SECTION……………………………………...……99
3.3.1 Materials………………………………………………………………….99
3.3.2 Preparation of Monomers (α-TPT and β-TPT)………………………..99
3.3.3 Preparation of polymers (P1 , P2)………………………………………103
3.3.4 Instrumental Characterization…………...……………………………...104
3.3.5 Preparation of polymer films……………………………………………104
3.4 RESULTS AND DISCUSSIONS………………………………………105
3.4.1 Characterization of materials……………………………………………105
3.4.2 Optical properties in solution…………………………………………...106
3.4.3 Theoretical calculations at the semi-empirical AM-1 level…………….110
3.4.4 Optical properties in polymer Films…………………………………….113
3.4.5 In Polymer Blends………………………………………………………117
3.5 CONCLUSSION……………………………………………………….123
3.6 REFERENCES…………………………………………………………124
CHAPTER 4 Fluorescent Conjugated Polymer Films as
TNT Chemosensors…………………………………….126
4.1 ABSTRACT……………………………………………………………126
4.2 INTRODUCTION……………………………………………………...127
4.3 EXPERIMENTAL SECTION………………………………………….128
4.4 RESULTS AND DISCUSSION………………………………………..130
4.5 CONCLUSION………………………………………………………...142
4.6 REFERENCE…………………………….…………………………….143
Appendix A. Synthesis and Characterization of New Soluble Conjugated
Aromatic Polyazomethines Figures………………………….145
Appendix B. Comparisions of Optical Properties for Kink Linkages and Alkylthio Group Substituents in the Poly (p-phenylene vinylene)
Related Polymers and Copolymers Data…………………………188
Appendix C. Synthesis and Optical Properties of Thiophene-containing α- and β- cyano Poly(p-phenylenevinylene) Derivatives Data……...206
Appendix D. Fluorescent Conjugated Polymer Films as
TNT Chemosensors Data…………………………………….226
1.6 REFERENCES
1. J. L. Bredas, R. R. Chance, Eds. Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990.
2. P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects on Molecules and Polymers. Wiley: New York, 1991.
3. Y. W. Park, A. J. Heeger, M. A. Druy, A. G. MacDiarmid, J. Chem. Phys., 73 (1980) 946.
4. J. E. Frommer, R. R. Chance, Encyl. Polym. Sci. Eng., 5 (1985) 462.
5. S. Antoun, F. E. Karasz, R. W. Lenz, J. Polym. Sci., Part A: Polym. Chem. 26 (1988) 1800.
6. J. C. Chiang, A. G. MacDiarmid, Synth. Met. 13 (1986) 193.
7. C. R. Hauer, G. S. King, E. L. McCool, W. B. Euler, J. D. Ferrara, W. J. Youngs, J. Am. Chem. Soc. 109 (1987) 5760.
8. R. Adams, J. E. Bullock, W. C. Wilson, J. Am. Chem. Soc. 45 (1923) 521.
9. W. Steinkopf, W. Eger, Liebigs Ann, Chem. 533 (1938) 270.
10. W. Steinkopf, R. Leitsman, A. H. Muller, H. Wilhelem, Liebigs Ann. Chem. 541 (1939) 260.
11. C. S. Marvel, N. Tarkoy, J. Am. Chem. Soc. 79 (1957) 6000.
12. C. S. Marvel, P. V. Bonsignor, J. Am. Chem. Soc. 81 (1959) 2668.
13. P. W. Morgan, S. L. Kwolek, T. C. Pletcher, Macromolecules 20 (1987) 729.
14. B. Milland, A. Thierry, A. Skoulious, Mol. Cryst Liq. Cryst. Lett. 41 (1978) 263.
15. C. J. Yang, S. A. Jenekhe, Macromolecules 28 (1995) 1180.
16. F. Barbarin, J. P. Blance, M. Dugay, C. Fabre, C. Maleysson, Synth. Met. 10 (1985) 71.
17. K. S. Lee, J. C. Won, J. C. Jung, Markromol. Chem. 190 (1989) 1547.
18. S. B. Park, H. Kim, W. C. Zin, J. C. Jung, Macromolecules 26 (1993) 1627.
19. S. A. Jenekhe, C. J. Yang, Chem. Mater. 3 (1991) 878.
20. S. A. Jenekhe, P. O. Johnson, Macromolecules 23 (1990) 4419.
21. C. J. Yang, S. A. Jendkhe, Chem. Mater 3 (1991) 878.
22. W. Fischer, F. Stelzer, F. Meghdadi, G. Leising, Synth. Met. 76 (1996) 201.
23. M. S. Weaver, D. D. C. Bradley, Synth. Met., 83 (1996) 61.
24. D. D. Perrin, W. L. F. Armerigo, Purification of Laboratory Chemicals, Pergamon, Oxford, 1998.
25. I. K. Spiliopoulos, J. A. Mikroyannidis, Macromolecules, 31 (1998) 1236.
26. B. R. Hsieh, W. C. Wan, Y. Yu, Y. Cao, T. E. Goodwin, S. A. Gonzalez, W. A. Feld, Macromolecules 31 (1998) 631.
27. L. L. Adams, F. A. Luzzio, J. Org. Chem. 54 (1989) 5387.
28. S. Matsuo, M. Nakao, Polymer Journal. 26 (1994) 738.
29. B. Boucard, T. Benazzi, D. Ades, G. Sauvet, Polymer. 38 (1997) 3697.
30. H. B. Hass, M. L. Bender, J. Chem. Soc., (1949) 1767.
31. R. G. Bryant, Polym. Prepr., 33 (1992) 182.
32. T. Matsumoto, F. Yamada, Macromolecules 30 (1997) 3547.
33. I. K. Spiliopoulos, J. A. Mikroyannidis, Macromolecules 29 (1996) 5313.
34. J. L. Musfeldt, J. R. Reynolds, D. B. Tanner, J. P. Ruiz, J. Wang, M. J. Pomerantz, J. Polym. Sci., Part B: Polym. Phys. 32 (1994) 2395.
35. W. H. Harris, B. A. Remhardt, Polym. Prepr. 15 (1974) 691.
36. A. Siove, R. David, D. Ades, C. Roux, M. Leclerc, J. Chim. Phys. 92 (1995) 787.
37. O. Thomas, O. Inganas, M. R. Andersson, Macromolecules 31 (1998) 2676.
38. B. S. Kang, D. H. Kim, S. M. Lim, J. Kim, M. L. Seo, K. M. Bark, S. C. Shin, K. Nahm, Macromolecules 30 (1997) 7196.
39. S. Son, A. Dodabalapur, A. J. Lovinger, M. E. Galvin, Science 269 (1995) 375.
40. J. I. Jin, Y. H. Lee, C. K. Park, B. K. Nam, Macromolecules 27 (1996) 5239.
41. B. S. Chuah, F. Cacilli, J. E. Davies, N. Feeder, R. H. Friend, A. B. Holmes, E. A. Marseglia, S. C. Moratti, J. L. Bredas, D. A. Dossantos, Mater. Res. Soc. Symp. Proc. 488 (1998) 87.
42.J. L. Bredas, A. J. Heeger, Chem. phys. Lett. 217 (1994) 507.
43. H. B. Burgi, J. D. Dunitz, J. Chem. Soc., Chem. Commun. (1969) 472.
44. N. Taetteberg, I. Hilmo, R. J. Abraham, S. J. Ljunggren, Mol. Struct. 48 (1978) 395.
45. G. Odian, N. L. Yang, Y. Wei, Magn. Reson. Chem. 23 (1985) 908.
46. D. H. Hwang, J. I. Lee, H. K. Shim, Synth. Met. 71 (1995) 1721.
47.I. N. Kang, D. H. Hwang, H. K. Shim, T. Zyung, J. J. Kim, Macromolecules 29 (1996) 165.
2.6 REFERENCES
1 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend,
P. L. Burn, A. B. Holmes, Nature 347 (1990) 539.
2. Hsieh, B. R. In Polymeric Materials Encyclopedia; Salamone, J. C., Ed.; CRC Press, Inc.
Boca Raton, FL, 1996; Vol. 9, p. 6537
3. Schott, M. In Organic Conductors: Fundamentals and Applications; Farges, (J. P., Ed.;
Marcel Dekker: New York, 1994; Vol. 12, pp. 539-646.
4. Horowitz, G. Adv. Mater. 2 (1990) 287,
5. Sariciftci, N. S.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.; Wudl, F.
Appl. Phys. Lett. 62 (1993) 585.
6. Antoniadis, H.; Hsieh, B. R.; Abkowitz, M. A.; Jenekhe, S. A.; Stolka, M. Synth. Met. 62 (1994) 265.
7. Abkowitz, M. A.; Antoniadis, H.; Facci, J. S.; Hsieh, B. R.; Stolka, M. Synth Met. 67( 1994) 187
8. Koezuka, H.; Tsumura, A.; Fuchigami, H.; Kuramoto, K. Appl. Phys. Lett. 62(1993)1794.
9. Garnier, J.; Hajlaoui, R.; Yassar, A.; Srivastava, P. Science 265(1994) 1684.
10. Dodabalapur, A.; Torsi, L.; Katz, H. E., Science 268(1995) 270.
11. Yang, Y.; Heeger, A. J. Nature 372(1994) 344.
12. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger, Nature, 357(1992) 477.
13. D. G. Lidzey, M. S. Weaver, T. A. Fisher, M. A. Pate, D. D. C. Bradley and M. S. Skonlnick, Synth. Met., 84 (1997) 159.
14. W. Huang, H. Meng, W. L. Yu, J. Gao, A. L. Heeger, Adv. Mater. 10 (1998) 593.
15. W. Huang, W. —L. Yu, H. Meng, J. Pei, S. F. Y. Li, Chem. Mater. 10 (1998) 3340.
16. M. Strnkelj, F. Papndimitrakopoulous, T. M. Miller, and L. J. Rothberg, Science, 261 (1995) 1969.
17. Y. Shi, Li. Liu, Y. Yang, J. Appl. Phy. 87 (2000) 4254.
18. M. Matsumur, K. Furukawa, and Y. Jinde, Thin. Solid. Films. 331 (1998) 201.
19. I. Benjamin, E. Z. Faragg, and G. Cohen, Synth. Met. 84 (1997) 401
20. J. H. Burroughess, D. D. C. Bradley, A. R. Brown, R. N. Mark, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 347 (1990)539.
21 T.. Ahn, M. S. Jang, H. K. Shim, Macromolecules, 32 (1999) 3279.
22 .H. C. B. Yoon, K. J. Moon, D. H. Hwang, H. K. Shim, Mol. Cryst. Liq. Cryst., 280 (1996) 181.
23 B. Yoon, I. N. Kang, H. K. Shim, J. Polym. Sci., A:Polym. Chem., 35 (1997) 2253.
24 N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holms, Nature, 365 (1993) 628.
25 P. Jian, L. Y. Wang, and H. Wei, Macromolecules, 33 (2000) 2462.
26. D. D. Perrin, W. L. F. Armerigo, Purification of Laboratory Chemicals, Pergamon, Oxford, 1998.
27.. Gilch, H. G.; Wheelwright, W. L. J. Polym. Sci., Part A-1, 4(1966)1337.
28. B. R. Hsieh, Y. Yu, A. C. VanLaeken, H. Lee, Macromolecules 30 (1997) 8094.
29. B. R.. Hsieh, Y. Yu, E. W. Forsythe, G. M. Xhaaf, W. A. Feld, J. Am. Chem. Soc. 120 (1998) 231.
30. F. Wudl, G. Srdanov, U. S. Patent 5, 189, 136, 1993.
31. S. C. Moratti, R. Cervini, A. B. Holmes, R. D. Baigent, R. H. Friend, N. C. Greenham, J. Gruner, P. J. Hamer, Synth. Met. 71 (1995) 2117.
32. (a) Z. Peng, M. E. Galvin, Chem. Mater 10 (1998) 1785.
(b) S. A. Chen, E. C. Chang Macromolecules 31 (1998) 4898.
33 .R.W. Lenz, C. E. Handlovitis, J. Org. Chem., 25 (1960) 813.
34. CRC Handbook of Chemistry and Physics, 1st Ed., CRC Press.
35. N. Thuc-Quyen, D. Vinh, J. S. Benjamin, J. Chem. Phys. 110(1999) 4068.
3.6 REFERENCES
1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackey, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 347 (1990) 539
2. (a) A. Kraft, A. C. Grimsdale, A. B. Holems, Angew. Chem. 110 (1998) 416
(b) R. H. Friend, R. W. Gymer, A. B. Holems, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, A. A. Dos Santos, J. L. Bredas, M. Logdlund, W.R. Salaneck, Nature 397 (1999) 121
(c) J. L. Segura, N. Martin, J. Chem. Mater. 10 (2000) 2403.
3. (a) D. Braun, A. J. Heeger, Appl. Phys. Lett. 58 (1991) 1982.
(b) L. D. Parker, J. Appl. Phys. 75 (1994) 1656.
4. N.C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend & A. B. Holmes, Nature,365 (1993) 628
5. (a) M. Karikomi, C. Kitamura, S. Tanaka and Y. Yamashita, J. Am. Chem. Soc., 117 (1995) 6791
(b) A. B. Holmes, S. C. Moratti, R. Cervini, D. R. Baigent, R. H. Friend, N. C. Greenham, and P. J. Hamer, Syn. Met., 21 (1995) 2117.
6. S. Miyata and H. S. Nalwa, “Organic Electroluminescece Materials and Devices”, p. 349
7. C. W. Tang, S. A. Van Slyke and C. H. Chen, J. Appl. Phys., 65 (1989) 3610.
8. D. D. Perrin, W. L. F. Armerigo, Purification of Laboratory Chemicals, Pergamon, Oxford, 1998.
9. V. M. Niemi, P. Knuuttila, J.-E. Österholm and J. Korvola, Polymer. 33 (1992) 1559.
10. W. Huang, H. Meng, W.-L. Yu, J. Pei, Z.-K. Chen and Y.-H. Lai, Macromolecules, 32 (1999) 118.
11. D. Oelkrug, A. Tompert, H. —J. Egelhaaf, M. Hanack, E. Steinhuber, M. Hohloch, and H. Meier, Synth. Met., 83 (1996) 231.
12. J. Pei, W. L. Yu, W. Huang and A. J. Heeger, Macromolecules, 33 (2000) 2462.
13. M. S. Dewar, E. G. Zoebish, R. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 107 (1985) 3902.
14. A. Lhost, J. L. Bredas, J. Chem. Phys. 96 (1992) 5279.
15. M. Fahlman, J. L. Bredas, Synth. Met. 78 (1996) 39.
16 . Y. M. Sun, Polymer, 42 (2001) 9495.
17. J. Brandrup and E. H. Immergut, Polymer Handbook, 3rd. ed., Wiley, New York, 1989.
18. (a) J. M. Nunzi, C. Sentein, A. Lorin, P. Raimond and E. Gautier, Syn. Met., 81 (1996) 197.
(b) G. Yu, A. J. Heeger, R. D. Ricke, H. Nishino and T. A. Chen, Syn. Met., 68 (1995) 243.
19. M. Berggen, O. Inganas, G. Gustaffson, J. Rasmusson, M. R. Anderson, T. Hjertberg and O. Wennerstrom, Nature, 372 (1994) 444.
20. M. Pope, and C. E. Swenberg, “Electronic Processes in Organic Crystals”, Clarendon Press, Oxford, 1992, Ch. 1.
21. S. Blumstengel, I. Sokolik, R. Dorsinville, D. Voloschenko, M. He, O. Lavrentovich, L. C. Chien, Syn. Met., 99 (1999) 85.
22. M. Yan, L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin and T. M. Miller, Phys. Rev. Lett., 72 (1994) 1104.
4.6 REFERENCE
1. C. D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wivedevhirn. P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Moerholz, Nature. 421(2003)829
2.T. Kim, R. L. Elsenbanmer, Macromolecules. 33 (2000)6407
3. H. Antoniadis, B. R. Hsieh, M. A. Abkowitz, S. A. Jenekhe, M. Stolka. Synth. Met. 62, (1994)265
4. (a) Y. S. Yang and T. M. Swager, J. Am. Chem. Soc. 120 (1998)11864. (b) D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev. 100 (2000)2537.
5. A. P. de. Silva, N. Gunaratine, T. Gunnlaughsson, A. J. M. Huxley,, C. P. Mcoy,, J. T. Rademacher,, T. E. Rice, Chem. Rev. 97 (1997)1515
6. F. W. Scheller, F. Schubert, and J. Fedrowitz Eds. Frontiers in Biosensorics I. Fundamental Aspects, Birkhayser-Verlag. Berlin (1997)
7. J. Yinon, Anal. Chem. A-Pages, 75(2003)98A.
8. B. R. Hsieh, Y. Yu, A. C. VanLaeken, H. Lee, Macromolecules 30 (1997)8094.
9. B. R. Hsieh, Y. Yu, Y.; E. W. Forsythe, G. M. Schaaf, W. A. Feld, J. Am. Chem. Soc. 120 (1998)131.
10. (a) C. H. Ting, C. S. Hsu, Jpn. J. Appl. Phys. 40 (2001)5342(b) T. Masuda, T. Hamano, K. Tada, M. Teraguchi, T. Masuda and K. Yoshino Jpn. J. Appl. Phys. 36 (1997)3470
11. Howard, P. H., Meylan, W. M., Eds. Handbook of Physical Properties of Organic Chemicals ; CRC Press: Boca Raton, 1997.
12. H. L. Chou, A. C. Su unpublished results.
13. D. W. van Krevelen, Properties of Polymers 3rd Ed.,, Elsevier, New York, 1997.
14. M. Yanagidate, K. Takayama, M. Takeuchi, J. Nishimura, H. Shizuka, J. Phys. Chem. 86(1993)401.
15. C. T. Chang, S. A. Jenekhe. Macromolecules 28 (1995)1880.
16. J. Pei, W. L. Yu, W. Huang, A. J. Heeger, Macromolecules 33 (2000)2462.
17. Handbook Series in Organic Electrochemistry; Merites, L., et al., Eds.; CRC Press; Boca Raton, 1978; Vol.1.
18. R. W. Kiser Table of Ionization Potentials, Kansas State University Press: Kansas,1960.
19. H. Antoniadis, B. R. Hsieh, M. A. Abkowitz, S. A. Jenekhe, M. Stolka, Mol. Cryst. Liq. Cryst. 256 (1994)381.
20. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 258 (1992)1474.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 張火燦、劉淑寧(2002)。從社會網絡理論探討員工知識分享。人力資源管理學報,2(3),101-112。
2. 王致遠(2001)。知識經濟時代下的知識管理策略。電腦科技,60,4-7。
3. 王美鴻(1997)。從組織文化論大學圖書館的組織變革。大學圖書館,1(2),53-68。
4. 馬曉雲(2000)。新經濟的營運模式-知識管理。軟體產業通訊,29,18-22。
5. 李弘暉(1997)。團隊領導第一章:認清團隊的本質。能力雜誌,497,42-45。
6. 許婉倫(1999)。點燃知識管理-企業攀越巔峰。資訊與電腦雜誌,233,86-89。
7. 陳兵兵(2000)。企業管理的重大革命-知識管理。管理雜誌,315,60-62。
8. 陳禹辰(1999)。知管理的意涵、特性與程序。中國勞工,999,33-39。
9. 陳樹祿(2001)。知識管理的真諦。中信通訊,222,37-41。
10. 彭若青(2002)。企業導入知識管理的推手。管理雜誌,335,124-125。
11. 董時叡(2001)。農業知識衍生者電腦網路知識分享意願研究。臺灣土地金融季刊,38(3),169-183。
12. 廖述賢(1999)。論「知識管理」對國防發展的重要性。國防雜誌,15(3),86-94。
13. 譚大純(1999)。知識管理的十八般武藝。會計研究月刊,169,20-26。
14. 陳文華,「運用資料倉儲技術於顧客關係管理」,能力雜誌,一月,民國89年,頁132~138。
15. 陳文華,「顧客關係管理成功的關鍵─高品質的顧客資料」,能力雜誌,第278 期,民國89年,第132-135 頁。
 
系統版面圖檔 系統版面圖檔