跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:溫文燊
研究生(外文):Wen-Shen Wuen
論文名稱:無線網路應用之互補金氧半射頻接收器設計
論文名稱(外文):CMOS RF Receiver Design for Wireless LAN Applications
指導教授:溫瓌岸
指導教授(外文):Kuei-Ann Wen
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1998
畢業學年度:92
語文別:英文
論文頁數:107
中文關鍵詞:射頻接收器直接降頻無線區域網路
外文關鍵詞:RF ReceiverDirect ConversionWireless LAN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本論文針對應用至無線區域網路之互補式金氧半(CMOS)射頻接收器提出系統化設計。設計考量涵蓋了通訊標準規格、電路的行為模式、電路設計到封裝模型以及射頻/基頻共同驗證的方法。對於各種無線區域網路之標準提出2.4/5-GHz雙頻直接轉換接收器架構之系統分析, 並針對部分關鍵電路進行設計實做。首先以0.25-um互補式金氧半製程技術設計之5-GHz頻段低雜訊放大器。此低雜訊放大器配有雙頻可切換負載,能夠操作於5-GHz無線區域網路應用之低頻段與高頻段; 其頻段的切換特性並不因溫度改變而影響。此外,本文提出一個低閃爍雜訊、電流折疊(Current-Folded)之混波器結構應用於低電壓直接轉換接收器。提出的混波器分離了傳統Gilbert-Cell混波器結構在雜訊指數、轉換增益以及交互調變失真之間的設計取捨,並且比「注射電流復用」(Current-Reused Injection)的架構展現更佳的效能。 並以0.18-um互補式金氧半製程進行電路實作,實驗結果驗證此混波器電路架構的優點。再者,提出射頻/基頻共同驗證的方法,得以在接收器進行實作前確認接收器之系統EVM表現,並以0.25-um互補式金氧半製程技術實做2.4-GHz直接轉換前端接收器,實驗結果與射頻/基頻共同模擬的結果相當吻合。
  The dissertation presents the systematic design of a direct conversion CMOS radio receiver for wireless LAN applications. The design considerations cover from standard specifications, circuit behaviors, schematic designs to package models as well as the RF/Baseband co-verification
method. A 2.4/5 GHz dual-band receiver architecture is proposed and analyzed for various wireless LAN applications
and some of the key circuits are designed and implemented.
First a 5-GHz low noise amplifier designed in 0.25-um
CMOS technology is presented. The LNA equips with a dual-band switchable load and is capable to operate in the upper and lower bands in the 5-GHz WLAN band. The switching ability is not affected by the temperature variation.
In addition, a low flicker noise current-folded mixer topology for low voltage direct conversion receiver is also proposed. The proposed mixer decouples the design tradeoffs between noise figure, conversion gain and third order intermodulation distortion in Gilbert-cell mixers
and exhibits much better performance compared with the conventional current-reused injection mixers. Moreover, an RF/Baseband co-verification methodology has been proposed to verify system EVM performance of the receiver prior to chip fabrication. A 2.4-GHz direct conversion front-end receiver has been implemented in 0.25-um CMOS technology as a part of the dual-band receiver and the measurement result shows agreement with the RF/Baseband co-simulation result.
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Wireless LAN Radio Receiver 4
2.1 Overview of Wireless LAN Standards . . . . . . . . . . . . . . . . . . 4
2.2 Wireless LAN Radio Specifications . . . . . . . . . . . . . . . . . . . 5
2.2.1 Frequency Bands . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Maximum Input Level . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Adjacent and Non-adjacent Channel Rejection . . . . . . . . . 8
2.2.5 Receiver Input Blocking . . . . . . . . . . . . . . . . . . . . . 8
2.3 Receiver Specification Calculation . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Noise Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Third Order Intermodulation . . . . . . . . . . . . . . . . . . 11
2.3.3 Second Order Intermodulation . . . . . . . . . . . . . . . . . . 11
2.3.4 Image Rejection Ratio . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 DC Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Even-Order Intermodulation . . . . . . . . . . . . . . . . . . . 16
2.4.3 I/Q Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 Flicker Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Receiver Link Budget Plan . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Noise Figure Calculation in Integrated Receivers . . . . . . . . 20
2.5.2 Intercept Point Calculation . . . . . . . . . . . . . . . . . . . 23
2.5.3 Dual-band Specifications Revisited . . . . . . . . . . . . . . . 24
2.5.4 Link Budget Analysis . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Dual-Band Switchable Low Noise Amplifier Design 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Radio Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Recent LNA Researches . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Broadband Load Design . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.1 Broadband Continuous-Tuned Load . . . . . . . . . . . . . . . 37
3.4.2 Dual-band Load . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Proposed Dual-band Switchable Load . . . . . . . . . . . . . . 39
3.5 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4 Low Flicker Noise Current-Folded Mixer 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Design Considerations on 1/f Noise Reduction . . . . . . . . . . . . . 53
4.3 The Proposed Current-Folded Topology . . . . . . . . . . . . . . . . . 55
4.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5 RF/Baseband Co-verification and Co-design 73
5.1 Necessity of RF/Baseband Co-verification . . . . . . . . . . . . . . . 73
5.2 RF/Baseband Co-verification Methodology . . . . . . . . . . . . . . . 77
5.2.1 Co-verification Platform . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Performance Measure for Co-verification . . . . . . . . . . . . 78
6 Case Study: 2.4-GHz Direct Conversion Receiver 80
6.1 Receiver Front-End Design . . . . . . . . . . . . . . . . . . . . . . . . 80
6.1.1 Behavior Design . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.2 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 RF/Baseband Co-verification and Co-design . . . . . . . . . . . . . . 85
6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7 Conclusions 94
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . 95
A EVM and SNR 96
B An Implementation of 2.4-GHz Low Noise Amplifier 98
Bibliography 102
[1] LAN/MAN Standards Committee of the IEEE Computer Society, IEEE
Standard 802 Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications, Institute of Electrical and Electronics
Engineers, Inc., Jun. 1997.
[2] LAN/MAN Standards Committee of the IEEE Computer Society, “High-speed
Physical Layer in the 5 GHZ Band,” IEEE Standard 802 Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,
Institute of Electrical and Electronics Engineers, Inc., Sep. 1999.
[3] LAN/MAN Standards Committee of the IEEE Computer Society,
“Higher-Speed Physical Layer Extension in the 2.4 GHz Band,” IEEE
Standard 802 Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications, Institute of Electrical and Electronics
Engineers, Inc., Sep. 1999.
[4] LAN/MAN Standards Committee of the IEEE Computer Society, “Amendment
4: Further Higher Data Rate Extension in the 2.4 GHz Band,” IEEE Standard
802 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) specifications, Institute of Electrical and Electronics Engineers, Inc.,
Jun. 2003.
[5] Takahiro Kikuchi, “WLAN: More Bandwidth, or Multiple Antennas?,” Nikkei
Electronics Asia, Nikkei Business Publications Asia Ltd., Mar. 2004.
[6] ETSI Project Broadband Radio Access Networks (BRAN), ETSI TS 101
475 Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Physical
(PHY) layer, European Telecommunications Standards Institute, Apr. 2000.
[7] H. T. Friis, “Noise Figures of Radio Receivers,” Proc. of the I.R.E., vol. 32,
pp. 419-422, Jul. 1944.
[8] W. Sansen, “Distortion in Elementary Transistor Circuits,” IEEE Trans.
Circuit and Systems–II: Analog and Digital Signal Processing, vol. 46, no.
3, pp. 315-325, March 1999.
[9] A. A. Abidi, “General Relations Between IP2, IP3, and Offsets in Differential
Circuits and the Effects of Feedback,” IEEE Trans. Microwave Theory and
Techniques, vol. 51, no. 5, pp. 1610-1612, May 2003.
[10] C. Eklund, R. B. Marks, K. L. Stanwood and S.Wang, “IEEE Standard 802.16:
A Technology Overview of the Wireless MAN Air Interface for Broadband
Wireless Access,” IEEE Communications Magazine, pp. 98-107, June 2002.
[11] ETSI Project Broadband Radio Access Networks, Broadband Radio Access
Networks HIPERLAN Type 2 Physical Layer, ETSI TS 101 475 V1.1.1, Apr.
2000.
[12] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,”
IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 745-759, 1997.
[13] A. Rofougaran, J.Y.-C. Chang, M. Rofougaran, and A.A. Abidi, “A 1 GHz
CMOS RF front-end IC for a direct-conversion wireless receiver,” IEEE Journal
of Solid-State Circuits, vol. 31, no. 7, pp. 880-889, 1996.
[14] H. Darabi and A. A. Abidi, “A 4.5-mW 900-MHz CMOS Receiver for Wireless
Paging,” IEEE Journal of Solid-State Circuits, vol. 35, no. 8, pp. 1085-1095,
Aug. 2000.
[15] E. Abou-Allam, E. I. EI-Masry , and T. Manku, “CMOS front end RF amplifier
with on-chip tuning,” 1996 IEEE International Symposium on Circuits and
Systems, pp.148-151, 1996.
[16] C.-Y. Wu and S.-Y. Hsiao, “The design of a 3-V 900-MHz CMOS bandpass
amplifier,” IEEE Journal of Solid-State Circuits, vol. 32, no. 2, pp. 159-168,
1997.
[17] Y.-Y. Chang, J. Choma, and J. Wills, “A 900MHz active CMOS LNA with
a bandpass filter,” 1999 IEEE Southwest Symposium on Mixed-Signal Design,
pp.33-36, 1999.
[18] Q. Huang, F. Piazza, P. Orsatti, and T. Ohguro, “The Impact of Scaling
Down to Deep Submicron on CMOS RF Circuits,” IEEE Journal of Solid-State
Circuits, vol. 33, no. 7, pp. 1023-1036, July 1998.
[19] J. Y.-C. Chang, A. A. Abidi, and M. Gaitan, “Large suspended inductors on
silicon and their use in a 2- m CMOS RF amplifier,” IEEE Electron Device
Letters, vol. 14, no. 5, pp. 246-248, 1993.
[20] Y.-C. Ho, M. Biyani, J. Colvin, C. Smithhisler, and K. O, “3V low noise
amplifier implemented using a 0.8-¹m CMOS process with three metal layers
for 900 MHz operation,” IEE Electronics Letters, vol. 32, no. 13, pp. 1191-1193,
1996.
[21] A. R. Shahani, D. K. Shaeffer, and T. H. Lee, “A 12-mW wide dynamic range
CMOS front-end for a portable GPS receiver,” IEEE Journal of Solid-State
Circuits, vol. 32, no. 12, pp. 2061-2070, 1997.
[22] J. C. Rudell, J.-J. Ou, T. B. Cho, G. Chien, F. Brianti, J. A. Weldon, and P. R.
Gray, “A 1.9-GHz wide-band IF double conversion CMOS receiver for cordless
telephone applications,” IEEE Journal of Solid-State Circuits, vol. 32, no. 12,
pp. 2071-2088, 1997.
[23] E. Abou-Allam and T. Manku, “A low voltage design technique for low noise
RF integrated circuits,” 1998 IEEE International Symposium on Circuits and
Systems, pp.373-377, 1998.
[24] D. L. C. Leung and H. C. Luong, “A 3-V CMOS differential bandpass amplifier
for GSM receivers,” 1998 IEEE International Symposium on Circuits and
Systems, pp.341-344, 1998
[25] A. Parssinen, S. Lindfors, J. Ryynanen, S. I. Long, and K. Halonen, “1.8 GHz
CMOS LNA with on-chip DC-coupling for a subsampling direct conversion
front-end,” 1998 IEEE International Symposium on Circuits and Systems,
pp.73-76, 1998.
[26] F. Stubbe, S. V. Kishore, C. Hull, and V. D. Torre, “A CMOS RF-receiver
front-end for 1 GHz applications,” 1998 IEEE Symposium on VLSI Circuits,
pp.80-83, 1998.
[27] G. Hayashi, H. Kimura, H. Simomura, and A. Matsuzawa, “A 9 mW 900 MHz
CMOS LNA with mesh arrayed MOSFETs,” 1998 IEEE Symposium on VLSI
Circuits, pp.84-85, 1998.
[28] A. A. Abidi, “On the Operation of Cascode Gain Stages,” IEEE Journal of
Solid-State Circuits, vol. 23, no. 6, pp. 1434-1437, 1988.
[29] D. P. Triantis and A. N. Birbas, “Optimal Current for Minimum Thermal Noise
Operation of Submicrometer MOS Transistor,” IEEE Transaction on Electron
Devices, vol. 44, no. 11, pp. 1990-1995, 1997.
[30] X.-D. Jin, J.-J. Ou, C.-H. Chen, W.-D. Liu, M.J. Deen, P. R Gray and C. M.
Hu. “An effective gate resistance model for CMOS RF and noise modeling,”
1998 IEEE International Electron Devices Meeting, pp. 961-964, 1998.
[31] A. N. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and mixer,” IEEE Journal
of Solid-State Circuits, vol. 31, no. 12, pp. 1939-1944, 1996.
[32] D. K. Shaeffer, A. R. Shahani, S. S. Mohan, H. Samavati, H. R. Rategh, M.
del Mar Hershenson, M. Xu, C. P. Yue, D. J. Eddleman, and T. H. Lee, “A
115-mW, 0.5- m CMOS GPS receiver with wide dynamic-range active filters,”
IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2219-2231, 1998.
[33] D. K. Shaeffer, The Design and Implementation of Low-Power CMOS Radio
Receivers, Ph. D. Thesis, Stanford Univeristy, 1998.
[34] I. Bouras et al., “A Digitally Calibrated 5.15 - 5.825GHz Transceiver for 802.11a
Wireless LANs in 0.18¹m CMOS,” Proc. IEEE International Solid-State Circuit
Conference, San Francisco, Feb. 9-13, 2003.
[35] B. Razavi, “Design Considerations for Direct Conversion Receivers,” IEEE
Transaction on Circuits and Systems–II, vol. 44, pp. 428-435, Jun. 1997.
[36] E. Pedersen, “RF CMOS Varactors for 2GHz Applications,” Analog Integrated
Circuits and Signal Processing Journal, vol. 26, pp. 27-36, Kluwer Academic
Publishers, 2000.
[37] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Co.,
2001.
[38] R. E. Lehmann and D. D. Heston, “X-Band Monolithic Series Feedback
LNA,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-33,
pp. 1560-1566, Dec. 1985.
[39] R. Gregorian and G. C. Temes, Analog MOS Integrated Circuits for Signal
Processing, John Wiley & Sons, Inc., 1986.
[40] H. Darabi, and A. A. Abidi, “Noise in RF-CMOS Mixers: A Simple Physical
Model,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15-25, January 2000.
[41] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, Analysis and Design of
Analog Integrated Circuits, 4th ed., John Wiley & Sons, Inc., 2001.
[42] D. Manstretta, R. Castello, and F. Svelto, “Low 1/f Noise CMOS Active
Mixer for Direct Conversion,” IEEE Trans. Circuits and Systems-II: Analog
and Digital Signal Processing, vol. 48, no. 9, pp. 846-850, September 2001.
[43] L. A. MacEachern, and T. Manku, “A Charge-Injection Method for Gilbert
Cell Biasing,” IEEE Canadian Conf. Electrical and Computer Engineering,
Canada, pp. 365-368, May 1998.
[44] S. G. Lee and J. K. Choi, “Current-Reuse Bleeding Mixer,” Electronics Letters,
vol. 36, no. 8, pp. 696-697, April 2000.
[45] Y. Nemirovsky, I. Brouk and C. G. Jaskobson, “1/f Noise in CMOS Transistors
for Analog Applications,” IEEE Trans. Electron Devices, vol. 48, no. 5, pp.
921-927, May 2001.
[46] W. Liu, X. Jin, J. Chen, M. C. Jeng, Z. Liu, Y. Cheng, K. Chen, M. Chan,
K. Hui, J. Huang, R. Tu, P. K. Ko and C. Hu, BSIM3v3.2.2 MOSFET Model
Users’Manual, University of California, Berkeley, 1999.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top