跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉又綸
研究生(外文):You-Lun Liu
論文名稱:氯化鹽類對質子交換膜燃料電池性能影響之研究
論文名稱(外文):Investigations of the Effect of chlorides on PEM Fuel Cells Performances
指導教授:曲新生曲新生引用關係
指導教授(外文):Hsin-Sen Chu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:96
中文關鍵詞:質子交換膜燃料電池氯化鹽性能超音波震盪器
外文關鍵詞:PEMFCChloridesPerformancesUltrasonic vibrator
相關次數:
  • 被引用被引用:3
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討使用含有氯化鹽類之陰極燃料氣體,對質子交換膜燃料池性能影響之研究。利用超音波震盪器將含有氯化鹽類的水溶液震盪成霧氣與陰極氣體混合,改變氯化鹽水溶液的濃度即可改變混和氣體內鹽分的濃度。結果顯示:五小時實驗測試,氯化鈉並不會因為濃度增加而影響電池之性能;另外,電流密度的改變也不會對燃料電池的性能造成影響。而氯化鈣,在低電流密度時,濃度的變化對燃料電池性能影響並不顯著,但當電流密度增加,濃度影響隨之提高,當電流密度越大而濃度越大,對燃料電池的性能影響的越嚴重。
累積操作時間氯化鹽類的燃料電池實驗,在定電流密度1A/cm2,操作108小時後,由線性方程式可計算出氯化鈉實驗衰減率為-1.082 mV h-1;而氯化鈣實驗衰減率為-3.446 mV h-1。另由極化曲線可觀察出,氯化鈣比氯化鈉對燃料電池性能影響較大,其造成性能下降的機制主要因腐蝕產生歐姆阻抗的增加及濃度極化的損失。氯化鹽類會影響直子交換膜內物種的傳輸行為。
This study presents an investigation of the proton exchange membrane fuel cell performances with the presence of chlorides in the cathode gas. Moisturized by the ultrasonic vibrator, the sodium chloride and calcium chloride were fed into the supply oxidant gas at different elevated concentrations. The results of five-hours testing show that the exist of sodium chloride in the cathode gas has no sensible influence on the cell performance for the set operation currents, while in the case of calcium chloride, the decay of output voltage increases with increasing operating current density.
The degradation rate of the cell voltage is -1.082 mV h-1 and -3.446 mV h-1 for 108 hours operation of cell with sodium chloride and calcium chloride in the cathode gas respectively at the current density of 1A/cm2. The polarization curves indicate that the mechanisms of the performance decay are mainly due to the ohmic and mass transport overpotentials that arise from the increasing of cell resistance and the hindrance of the passage for the reaction species by the existence of chlorides in the cathode gas.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 ix
符號說明 xi
一、緒論 1
1.1 燃料電池發展之歷史與簡介 1
1.2 燃料電池的優點 3
1.2.1 高效率 3
1.2.2 可靠性 3
1.2.3 良好的環境效益 3
1.2.4 良好的操作性能 4
1.2.5 發展潛力 4
1.3 燃料電池的種類 5
1.3.1 液態電解質燃料電池 5
1.3.2 固態電解質燃料電池 6
1.4 文獻回顧 9
1.4.1 質子交換膜燃料電池之水管理 9
1.4.2 質子交換膜燃料電池之熱管理 15
1.4.3 薄膜內的水傳輸現象 17
1.5 研究動機及目的 19
二、理論分析 21
2.1 燃料電池的基本原理 21
2.2 燃料電池極化性能曲線 22
2.2.1 燃料穿越與內電流 22
2.2.2 活化極化 22
2.2.3 歐姆極化 23
2.2.4 濃度極化 23
三、實驗設備與分析 30
3.1 標準測試燃料電池 30
3.1.1 電池構造與規格 30
3.1.2 電池組裝流程 32
3.2 實驗設備 33
3.2.1 測試機台 33
3.2.2 混合瓶 33
3.2.3 掃描式電子顯微鏡 34
3.2.4 X射線能量散佈分析儀 35
3.3 實驗步驟 36
3.4 誤差分析 37
3.5 氣體氯化鹽類濃度分析 37
四、結果與討論 50
4.1 電池活化 50
4.2 氧氣與空氣之比較 50
4.3 超音波增濕法與加溫增濕法比較 51
4.4 氯化鹽類對性能影響之研究 52
4.4.1 濃度與電流密度的影響 52
4.4.2 累積時間影響 53
4.5 氯化鹽類對燃料電池的影響機制 55
五、結論與建議 75
參考文獻 77
1.Grove, W. R., “On a New Voltaic Combination”, Philos. Mag., Vol. 14, No. 31, pp. 127, 1938.
2.Ostwald, W., Z. Elektrochemie, Vol. 1, pp. 122, 1894.
3.Kordesch, K. and Simader, G., “Fuel Cells and Their Applications”, Weinheim, Germany, VCH, 1996.
4.Ledjeff-Hey, K. and Heinzel, A., “Critical issues and future prospects for solid polymer fuel cells”, J. Power Sources, Vol. 61, No. 1-2, pp. 125-127, 1996.
5.Sjunnesson, L., “Utilities and their investments in fuel cells”, J. Power Sources, Vol. 71, No. 1-2, pp. 41-44, 1998.
6.Bosio, B., Costamagna, P., Parodi, F. and Passalacqua, B., “Industrial experience on the development of the molten carbonate fuel cell technology”, J. Power Sources, Vol. 74, No. 2, pp. 175-187, 1998.
7.De Geeter, E., Mangan, M., Spaepen, S., Stinissen, W. and Vennekens, G., “Alkaline fuel cells for road traction”, J. Power Sources, Vol. 80, No. 1-2, pp. 207-212, 1999.
8.Larminie, J. and Dicks, A., Fuel Cell Systems Explained, John Wiley & Sons, LTD, 2001.
9.Mosdale, R. and Srinivasan, S., “Analysis of Performance and of Water and Thermal Management in Proton Exchange Membrane Fuel Cells,” Electrochimica Acta., Vol. 40, No. 4, pp. 413-421, 1995.
10.Costamagna, P. and Srinivasan, S., “Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000 Part I. Fundamental Scientific Aspects,” J. Power Sources, Vol. 102, No. 1-2, pp. 242-252, 2001.
11.Costamagna, P. and Srinivasan, S., “Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000 Part II. Engineering, Technology Development and Application Aspects,” J. Power Sources, Vol. 102, No. 1-2, pp. 253-269, 2001.
12.Srinivasan, S., Velev, O. A., Parthasarathy, A., Manko, D. J., and Appleby, A. J., “High Energy Efficiency and High Power Density Proton Exchange Membrane Fuel Cells-Electrode Kinetics and Mass Transport”, J. Power Sources, Vol. 36 ,pp. 299-320, 1991.
13.Okada, T., Xie, G. and Meeg M., “Simulation for water management in membranes for polymer electrolyte fuel cells”, Electrochmica Acta., Vol. 43, No. 14-15, pp. 2141-2155, 1998.
14.Bernardi, D. M., “ Water-Balance Caculation for Solid - Polymer - Electrolyte Fuel Cells,” J. Electrochem. Soc., Vol. 137, No. 11, pp. 3344-350, 1990.
15.Bernardi, D. M. and Verbrugge, M. W., “ Mathematical Model of a Gas diffusion Electrode Bonded to a Polymer Electrolyte,” AICHE Journal, Vol. 37, No. 8, pp. 1151-1163, 1991.
16.Verbrugge, M. W. and Hill, R. F., “ Transport Phenomena in Perfluorosulfonic Acid Membranes during the Passage of Current,” J. Electrochem. Soc., Vol. 137, No. 4, pp. 1131-1138, 1990.
17.Bernardi, D. M. and Verbrugge, M. W., “ A Mathematical Model of Solid-Polymer-Electrolyte Fuel Cell,” J. Electrochem. Soc., Vol. 139, No. 9, pp. 2477-2490, 1992.
18.Singh, D., Lu, D. M. and Djilali, N., “ A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells,” Int. J. Engineering Science, Vol. 37, No. 4, pp. 431-452, 1999.
19.Springer, T. E., Zawodzinski, T. A. and Gottesfeld, S., “ Polymer Electrolyte Fuel Cell Model,” J. Electrochem. Soc., Vol. 138, No.8, pp. 2334-2342, 1991.
20.Springer, T. E., Wilson, M. S. and Gottesfeld, S., “ Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc., Vol. 140, No. 12, pp. 3513-3526, 1993.
21.Nguyen, T. V. and White, R. E., “ A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells,” J. Electrochem. Soc., Vol. 140, No. 8, pp. 2178-2189, 1993.
22.Yi, J. S. and Nguyen, T. V., “ An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells,” J. Electrochem. Soc., Vol. 145, No. 4, pp. 1149-1159, 1998.
23.Natarajan, N. and Nguyen, T. V., “ A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors,” J. Electrochem. Soc., Vol. 148, No. 12, pp. 1324-1335, 2001.
24.Wood, D. L., Yi, J. S. and Nguyen, T. V., “Effect of Direct Liguid Water Injection and Interdigitated Field on the Performance of Proton Exchange Membrane Fuel Cells”, Electrochim. Acta, Vol. 43, No. 24, pp. 3795-3809, 1998.
25.Yi, J. S. and Nguyen, T. V., “ Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors,” J. Electrochem. Soc., Vol. 146, No. 1, pp. 38-45, 1999.
26.He, W., Yi, J. S. and Nguyen, T. V., “ Two-phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields,” AICHE Journal, Vol. 46, No. 10, pp. 2053-2064, 2000.
27.曾建穎,“燃料電池新型流道之設計”,私立華梵大學機電工程研究所碩士學位論文,2003。
28.陳基業,“交叉型流道設計對質子交換膜燃料電池性能之影響”,私立華梵大學機電工程研究所碩士學位論文,2003。
29.Watanabe, M., Uchida, H., Emori, M., “Analyses of self-humidification and suppression of gas crossover in Pt-dispersed polymer electrolyte membranes for fuel cells”, J. Electrochem. Soc., Vol. 145, No. 4, pp. 1137-1141, 1998.
30.Watanabe, M., Uchida, H., Emori, M., “Polymer electrolyte membranes incorporated with nanometer-size particles of Pt and/or metal-oxides: Experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells”, J. Phy. Chem. B, Vol. 102, No. 17, pp. 3129-3137, 1998.
31.Wang, C. Y., and Cheng, P., “A multiphase mixture model for multiphase, multicomponent transport in capillary porous media—I. Model development,” Int. J. Heat Mass Transfer, Vol. 39, No. 17, pp. 3607-3618, 1996.
32.Um, S., Wang, C. Y. and Chen, K. S., “ Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,” J. Electrochem. Soc., Vol. 147, No. 12, pp. 4485-4493, 2000.
33.Wang, Z. H., Wang, C. Y., and Chen, K. S., “Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells,” J. Power Sources, Vol. 94, pp. 40-50, 2001.
34.You, L., and Liu, H., “A two-phase flow and transport model for the cathode of PEM fuel cells,” Int. J. Heat Mass Transfer, Vol. 45, pp. 2277-2287, 2002.
35.Okada, T., Xie, G. and Tanabe, Y., “Theory of Water Management at the Anode Side of Polymer Electrolyte Fuel Cell Membranes”, J. Electroanal. Chem., Vol. 413, pp. 49-65, 1996.
36.Okada, T., “Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells. Part 1. The Effect of Impurity Ions at the Anode Side on the Membrane Performances”, J. Electroanal. Chem., Vol. 465, pp. 1-17, 1999.
37.Okada, T., “Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells. Part 2. The Effect of Impurity Ions at the Cathode Side on the Membrane Performances”, J. Electroanal. Chem., Vol. 465, pp. 18-29, 1999.
38.Chu, H. S., Yeh, C. and Chen, F., “Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell”, J. Poewr Sources, Vol. 123, No. 1, pp. 1-9, 2003.
39.劉駿達,“應用兩相流模式分析質子交換膜燃料電池陰極氣體擴散層參數影響”,國立交通大學機械工程研究所碩士學位論文,2003。
40.Rowe, A., and Li, X., “Mathematical Modeling of Proton Exchange Membrane Fell cells,” J. Power Sources, Vol. 102, No. 1-2, pp. 82-96, 2001.
41.Fuller, T. F. and Newman J., “ Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells,” J. Electrochem. Soc., Vol. 140, No. 5, pp. 1218-1225, 1993.
42.Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P. R. and Harris, T. J., “ Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell – I. Mechanistic Model Development,” J. Electrochem. Soc., Vol. 142, No. 1, pp. 1-8, 1995.
43.Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P. R. and Harris, T. J., “ Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell – II. Empirical Model Development,” J. Electrochem. Soc., Vol. 142, No. 1, pp. 9-15, 1995.
44.吳宏一,“質子交換膜燃料電池中薄膜水濃度與溫度之分析”,國立台灣大學應用力學研究所碩士學位論文,2003。
45.張開泰,“質子交換膜燃料電池內溫度分佈對其性能影響之分析”,國立交通大學機械工程研究所碩士學位論文,2003。
46.Xie, G. and Okada, T., “Pumping Effects in Water Movement Accompanying Cation Transport across Nafion 117 Membranes”, Electrochim. Acta, Vol. 41, pp. 1569-1571, 1996.
47.Zawodzinski, T. A., Derouin, C., Radzinski, S., Sherman, R. J., Smith, V. T., Springer, T. E. and Gottesfeld, S., “Water Uptake by and Transport through Nafion 117 Membranes”, J. Electrochem. Soc., Vol. 140, pp. 1041-1047, 1993.
48.Zawodzinski, T. A., Davey, J., Valerio, J. and Gottesfeld, S., “The Water Content Dependence of Electro-Osmotic Drag in Proton-Conducting Polymer Electrolytes”, Electrochim. Acta, Vol. 40, pp. 297-302, 1995.
49.Okada, T., Xie, G., Gorseth, O., Kjelstrup, S., Nakamura, N. and Arimura, T., “ Ion and Water Transport Characteristics of Nafion Membranes as Electrolytes,” Electrochimica Acta, Vol. 43, No. 24, pp. 3741-3747, 1998.
50.蘇昱光,“質子交換膜燃料電池薄膜內水傳輸之暫態分析”,國立台灣大學應用力學研究所碩士學位論文,2003。
51.Okada, T. and Nakamura, N., “Ion and Water Transport Characteristics in Membranes for Polymer Electrolyte Fuel Cells Containing H+ and Ca2+ Cations”, J. Electrochem. Soc., Vol. 144, pp. 2744-2750, 1997.
52.Okada, T., Moller-Holst, S., Gorseth, O. and Kjelstrup, S., “Transport and Equilibrium Properties of Nafion Membranes with H+ and Na+ Ions”, J. Electroanal. Chem., Vol. 442, pp. 137-145, 1998.
53.Okada, T., Ayato, Y., Yuasa, M. and Sekine, I., “The Effect of Impurity Cations on the Transport Characteristics of Perfluorosulfonated Ionomer Membranes”, J. Phys. Chem. B, Vol. 103, pp. 3315-3322, 1999.
54.Okada, T., Satou, H., Okuno, M. and Yuasa, M., “Ion and Water Transport Characteristies of Perfluorosulfonated Ionomer Membranes with H+ and Alkali Metal Cations”, J. Phys. Chem. B, Vol. 106, pp. 1267-1273, 2002.
55.郭寶章,“桃園海岸之防風林消長、鹽害為害與稻作生產相關文獻之析釋”,中華林學會,台北市,民82。
56.Okada, T., Handbook of Fuel Cells ─ Fundamentals, Technology and Applications, John Wiley & Sons, LTD, Ch. 48, 2003.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王振德(民87a)。資源教室的行政管理與經營。特教園丁,13(3),1-6。
2. 王天苗(民72)。國中小資源教室實施狀況之調查研究。特殊教育季刊,10,14-24。
3. 王振德(民87b)。資源利用與公共關係-資源教室經營的兩個要項。特殊教育季刊,69,32-38。
4. 白菊鳳(民87)。資源教室實務經驗談。特教園丁,13(3),11-15。
5. 何東墀、張昇鵬(民81)。我國特殊教育師資培育與進修途徑之研究。特殊教育學報,7,85-126。
6. 吳武典、韓福榮、林純真、林敏慧(民87)。我國特殊教育師資培育與進用政策之分析與調查研究。特殊教育研究學刊,16,1-22。
7. 李慶良(民88)。教育權利與零拒絕。特教新知通訊,6(1),5-7。
8. 林千惠、盧台華(民88)。教育行政人員對國中階段身心障礙類師資培育相關議題看法之研究。特殊教育學報,13,281-310。
9. 林月盛(民87)。資源教室方案的現況與改進。特殊教育季刊,67,27~29。
10. 林麗華(民78)。我國特殊教育師資訓練之昨日、今日與明日。特殊教育季刊,32,4-9。
11. 施明發(民85)。談教師法施行後的教師介聘。師友月刊,345,35-37。
12. 柯貴美(民87)。從教育改革聲中談特殊教育的轉型。國小特殊教育,25,52-59。
13. 胡永崇(民81)。特殊教育發展的重要取向對國內特殊教育的啟示。特教園丁季刊,7(4) ,5-10。
14. 胡永崇(民89)。國小身心障礙資源班實施現況及改進之研究:以高雄縣為例。屏東師院學報,13,75-110。
15. 高令秋(民83)。資源教室設計之探討。研習資訊,11(6),51-54。