|
References [1] V. S. Afraimovich, L. Y. Glebsky and V. I. Nekorkin, Stability of stationary states and toplogical spatial chaos in multidimensional lattice dynamical systems, Random & Comput. dynam., 2 (1994), pp. 287–303. [2] V. S. Afraimovich, and V. I. Nekorkin, Chaos of traveling waves in a discrete chain of diusivelycoupledmaps, Internat. J. Bifur. and Chaos, 4 (1994), pp. 631–637. [3] J. C. Ban, S. S. Lin, C. H. Hsu, Spatial disorder of cellular neural networks-with biased term, Internat. J. Bifur. and Chaos, 12 (2002), pp. 525-534. [4] J.-C. Ban, K.-P. Chien, S.-S. Lin, C.-H. Hsu, Spatial disorder of CNN-with asymmetric output function. Internat. J. Bifur. and Chaos, 11 (2001), pp. 2085-2095. [5] S.-N. Chow, J. Mallet-Parent, and W. Shen, Traveling waves in lattice dynamical systems, J. Di. Eqns. 149 (1998), pp. 248-291. [6] G. Chen, S.-B. Hsu, and J. Zhou, Snap-backrepellers as a cause ofchaotic vibration of the wave equation witha van der Pol boundarycondition and energy injection at the middle of the span, J. Math. Phys., 39 (1998), pp. 6459–6489. [7] L.-O. Chua,CNN: A Paradigm for Complexity, World Scientific, Signpore, 1998. [8] L.-O. Chua, L. Yang, Cellular neural networks: Theory ,IEEE Trans. Circuits Syst., 35 (1998a), pp. 1257–1272. [9] L.-O. Chua, L. Yang, Cellular neuralnetworks: Application ,IEEE Trans. Circuits Syst., 35 (1998b), pp. 1273–1290.
[10] R. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Addism-Wesley, New York, 1989. [11] T. Erneux, and G. Nicolis, Propagation waves in discrete bistable reaction diusion systems, Physica D, 67 (1993), pp. 273–244. [12] G.Fáth, Propagation failure of traveling waves in discrete bistable medium, Physica D, 116 (1998), pp. 176–190. [13] M. Hänggi, and L. O. Chua,Simulation of RTD-based CNNcells, Memorandum UCB/ERL M00/51, Electronic Research Laboratory, University of California, Berkeley,2000. [14] C.-H. Hsu, and S.-S Lin, Existence and multiplicity of traveling waves in a lattice dynamical system, J. Di. Eqns., 164 (2000), pp. 431–450. [15] C.-H. Hsu, S.-S Lin and W. Shen, Traveling waves in cellular neural networks, Internat. J. Bifur. and Chaos, 9 (1999), pp. 1307–1319. [16] C.-H. Hsu, S.-Y Yang, On camel-like travelingwave solutions in cellular neural networks, J. Di. Eqns, 196 (2004), pp. 481–514. [17] H. Hudson, and B. Zinner, Existence of traveling waves for a generalized discrete Fisher’s equation, Comm. Appl. Nonlinear Anal., 1(1994), pp. 23–46. [18] E. Isaacson, and H. Keller, Analysis of Numerical MethodsI, Wiley, New York 1966. [19] M. Itoh, P. Julián, and L. O. Chua, RTD-basedcellular neuralnetworks with multiple steady states, Internat. J. Bifur. and Chaos, 11 (2001), pp. 2913–2959. [20]J. Juang, S.-S. Lin, Cellular neuralnetworks: mosaic pattern and spatial chaos, SIAM J. Appl. Math.,47 (2000), pp. 891–915.
[21] J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), pp. 556–572. [22] T.-Y. Li, and J. A. Yorke, Period three implies Chaos, Amer. Math. Monthly, 82 (1975), pp. 985–992. [23] W. Lin, J. Ruan, and WR. Zhao, On the mathematical clarication of the snap-back repeller in high-dimensional systems and chaos in a discrete neural network model, Internat. J. Bifur. and Chaos, 12 (2002), pp. 1129–1139. [24] C. Li, and G. Chen. An improved version of the Marotto Theorem, Chaos Solu. Frac., 18 (2003), pp. 69–77. [25] F.-R. Marotto, Snap-back repellers imply Chaos in Rn , J. Math. Anal. Appl., 63 (1978), pp. 199–223. [26]J. Mallet-Paret, The Fredhole alternative for functional dierentialequations of mixed type, J. Dynam. Di. Eqns., 11 (1999), pp. 1–48. [27] J. Mallet-Paret, The golbal structure of traveling waves in spatial discrete dynamical systems, J. Dynam. Di. Eqns., 11 (1999), pp. 49–127. [28] J. Ortega and W.C. Rheinbaldt, Iterative Solution of Nonlinear Equations in Serveral Variables, Academic Press, N.Y.,1970. [29] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, CRC press, Inc, 1995. [30] P. Thiran,Dynamics and Self-organization of Locally coupled Neural Networks, Presses Polytechniques et Universitaries Romandes, Lausanne, Switzerland , (1997). [31] J. Wu, and X. Zou, Asymptotial and periodic boundary value problems ofmixed PDEs an wave solutions of lattice dierentialequations, J. Di. Eqns., 135 (1997), pp. 315–357. [32] B. Zinner, Existence of traveling wavefronts for the discrete Nagumo equation, J. Di. Eqns., 96 (1992), pp. 1–27. [33] B. Zinner, G. Harris, and W. Hudson, Traveling wavefronts for the discrete Fisher’s equation, J. Di. Eqns., 105 (1993), pp. 46–62. [34] B. Zou, and J. Wu, Local existence and stability of periodic traveling waves of lattice dierential equations, Candian Appl.Math.Quarterly., 6 (1998), pp. 397–418.
|