跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 03:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭雅文
研究生(外文):Chang Ya-Wen
論文名稱:一維類神經網路的Snap-BackRepellers與混沌行波
論文名稱(外文):Snap-Back Repellers And Chaotic Traveling Waves In One-Dimensional Cellular Neural Networks
指導教授:莊重莊重引用關係
指導教授(外文):Jonq Juang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
畢業學年度:93
語文別:英文
論文頁數:23
中文關鍵詞:Snap-back repellers行波類神經系統
外文關鍵詞:Snap-back repellerstraveling wavescellular neural networks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在1998年,陳、許和周等人[6],在Marotto的文章中[25],找到一個錯誤。他們指出,F有一個擴張的固定點z,並不保證,F在以 r 為半徑 z 為中心的球中是擴張。後來有些論文(見,[6]、[23]與[24] )是在解決這個錯誤,可是當中都存在一些問題。其中一個問題是,他們只給了 F 在"局部"是擴張的條件。在這篇論文中,我們給一足夠的條件,使得F是 "大域"擴張。其次,是給個比較完整的snap-back repeller定義。最後,我們使用這些結果,證明在離散時間一維類神經網路(CNNs)中有時間往後的混沌行波存在。
In 1998﹐Chen et al.﹐[6] found an error in Marotto's paper [25]. The problem is that the existence of an expanding fixed point z of a map F does not necessarily imply that F is expanding in ﹐the ball of radius r with center at z. Subsequent efforts (see e.g., [6], [23]-[24].) in fixing the problem all have some discrepancies. One of the problems is that they only give conditions for which F is expanding "locally". In this thesis﹐we give a sufficient condition so that F is "globally" expanding. This﹐in turn﹐gives more satisfying definitions of a snap-back repeller. We then use those results to show the existence of chaotic backward traveling waves in a discrete time analogy of one-dimensional Cellular Neural Networks (CNNs).
References
[1] V. S. Afraimovich, L. Y. Glebsky and V. I. Nekorkin, Stability of stationary states and toplogical spatial chaos in multidimensional lattice dynamical systems, Random & Comput. dynam., 2 (1994), pp. 287–303.
[2] V. S. Afraimovich, and V. I. Nekorkin, Chaos of traveling waves in a discrete chain of diusivelycoupledmaps, Internat. J. Bifur. and Chaos, 4 (1994), pp. 631–637.
[3] J. C. Ban, S. S. Lin, C. H. Hsu, Spatial disorder of cellular neural networks-with biased term, Internat. J. Bifur. and Chaos, 12 (2002), pp. 525-534.
[4] J.-C. Ban, K.-P. Chien, S.-S. Lin, C.-H. Hsu, Spatial disorder of CNN-with asymmetric output function. Internat. J. Bifur. and Chaos, 11 (2001), pp. 2085-2095.
[5] S.-N. Chow, J. Mallet-Parent, and W. Shen, Traveling waves in lattice dynamical systems, J. Di. Eqns. 149 (1998), pp. 248-291.
[6] G. Chen, S.-B. Hsu, and J. Zhou, Snap-backrepellers as a cause ofchaotic vibration of the wave equation witha van der Pol boundarycondition and energy injection at the middle of the span, J. Math. Phys., 39 (1998), pp. 6459–6489.
[7] L.-O. Chua,CNN: A Paradigm for Complexity, World Scientific, Signpore, 1998.
[8] L.-O. Chua, L. Yang, Cellular neural networks: Theory ,IEEE Trans. Circuits Syst., 35 (1998a), pp. 1257–1272.
[9] L.-O. Chua, L. Yang, Cellular neuralnetworks: Application ,IEEE Trans. Circuits Syst., 35 (1998b), pp. 1273–1290.

[10] R. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Addism-Wesley, New York, 1989.
[11] T. Erneux, and G. Nicolis, Propagation waves in discrete bistable reaction diusion systems, Physica D, 67 (1993), pp. 273–244.
[12] G.Fáth, Propagation failure of traveling waves in discrete bistable medium, Physica D, 116 (1998), pp. 176–190.
[13] M. Hänggi, and L. O. Chua,Simulation of RTD-based CNNcells, Memorandum UCB/ERL M00/51, Electronic Research Laboratory, University of California, Berkeley,2000.
[14] C.-H. Hsu, and S.-S Lin, Existence and multiplicity of traveling waves in a lattice dynamical system, J. Di. Eqns., 164 (2000), pp. 431–450.
[15] C.-H. Hsu, S.-S Lin and W. Shen, Traveling waves in cellular neural networks, Internat. J. Bifur. and Chaos, 9 (1999), pp. 1307–1319.
[16] C.-H. Hsu, S.-Y Yang, On camel-like travelingwave solutions in cellular neural networks, J. Di. Eqns, 196 (2004), pp. 481–514.
[17] H. Hudson, and B. Zinner, Existence of traveling waves for a generalized discrete Fisher’s equation, Comm. Appl. Nonlinear Anal., 1(1994), pp. 23–46.
[18] E. Isaacson, and H. Keller, Analysis of Numerical MethodsI, Wiley, New York 1966.
[19] M. Itoh, P. Julián, and L. O. Chua, RTD-basedcellular neuralnetworks with multiple steady states, Internat. J. Bifur. and Chaos, 11 (2001), pp. 2913–2959.
[20]J. Juang, S.-S. Lin, Cellular neuralnetworks: mosaic pattern and spatial chaos, SIAM J. Appl. Math.,47 (2000), pp. 891–915.

[21] J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), pp. 556–572.
[22] T.-Y. Li, and J. A. Yorke, Period three implies Chaos, Amer. Math. Monthly, 82 (1975), pp. 985–992.
[23] W. Lin, J. Ruan, and WR. Zhao, On the mathematical clarication of the snap-back repeller in high-dimensional systems and chaos in a discrete neural network model, Internat. J. Bifur. and Chaos, 12 (2002), pp. 1129–1139.
[24] C. Li, and G. Chen. An improved version of the Marotto Theorem, Chaos Solu. Frac., 18 (2003), pp. 69–77.
[25] F.-R. Marotto, Snap-back repellers imply Chaos in Rn , J. Math. Anal. Appl., 63 (1978), pp. 199–223.
[26]J. Mallet-Paret, The Fredhole alternative for functional dierentialequations of mixed type, J. Dynam. Di. Eqns., 11 (1999), pp. 1–48.
[27] J. Mallet-Paret, The golbal structure of traveling waves in spatial discrete dynamical systems, J. Dynam. Di. Eqns., 11 (1999), pp. 49–127.
[28] J. Ortega and W.C. Rheinbaldt, Iterative Solution of Nonlinear Equations in Serveral Variables, Academic Press, N.Y.,1970.
[29] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, CRC press, Inc, 1995.
[30] P. Thiran,Dynamics and Self-organization of Locally coupled Neural Networks, Presses Polytechniques et Universitaries Romandes, Lausanne, Switzerland , (1997).
[31] J. Wu, and X. Zou, Asymptotial and periodic boundary value problems ofmixed PDEs an wave solutions of lattice dierentialequations, J. Di. Eqns., 135 (1997), pp. 315–357.
[32] B. Zinner, Existence of traveling wavefronts for the discrete Nagumo equation, J. Di. Eqns., 96 (1992), pp. 1–27.
[33] B. Zinner, G. Harris, and W. Hudson, Traveling wavefronts for the discrete Fisher’s equation, J. Di. Eqns., 105 (1993), pp. 46–62.
[34] B. Zou, and J. Wu, Local existence and stability of periodic traveling waves of lattice dierential equations, Candian Appl.Math.Quarterly., 6 (1998), pp. 397–418.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top