(3.227.0.150) 您好!臺灣時間:2021/05/08 10:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳岳昌
研究生(外文):Yueh-Chang Wu
論文名稱:探討ERD方法在腦機介面系統設計之效能
論文名稱(外文):Investigation of the ERD Approach for BCI System Design
指導教授:羅佩禎羅佩禎引用關係
指導教授(外文):Pei-Chen Lo
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:82
中文關鍵詞:腦機介面腦電波動作想像
外文關鍵詞:brain-computer interfaceelectroencephalogrammotor imagery
相關次數:
  • 被引用被引用:6
  • 點閱點閱:678
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:4
根據觀察,想像動作時大腦運動區的神經元活動方式,和實際動作執行下的情形非常類似,其中,最明顯的特徵就是mu波和beta波振幅的抑制。這種大腦皮層的感覺運動神經因某些特定的事件而發生的非同步或同步活化現象,稱之為event-related desynchronization/synchronization(ERD/ERS)。本篇論文主要的目的在於建構一套腦機介面系統,利用ERD的方法,判別受測者想像左右手動作時的腦電波變化。
本研究使用DSLVQ的方法找出最佳的頻帶範圍,再應用線性判別分析做形態分類。為了發展即時的腦機控制系統,我們先由受測者的腦電波特徵,訓練出受測者特有的分類器。在即時的分析上,腦機介面系統便藉由訓練出來的分類器即時判別腦電波的形態。在目前的階段,我們的方法可以達到60%~80%的判別正確率。
目 錄

中文摘要------------------------------------------------------------------------------------------------I
英文摘要-----------------------------------------------------------------------------------------------II
誌謝-----------------------------------------------------------------------------------------------------III
目錄----------------------------------------------------------------------------------------------------IV
表目錄-------------------------------------------------------------------------------------------------VI
圖目錄------------------------------------------------------------------------------------------------VII

第一章 導論 1
1.1 背景 1
1.2 相關研究 1
1.3 研究動機 3
1.4 章節安排 3

第二章 理論與方法 5
2.1 腦電波 5
2.2 實驗設備 7
2.3 腦電波分析方法 8
2.3.1 前置處理 9
2.3.2 特徵萃取 11
2.3.3 DSLVQ 12
2.3.4 ERD/ERS 15
2.3.5 線性判別分析 17
2.3.6 10×10混合交叉確認 21
第三章 實驗流程 23
3.1 腦電波錄製 23
3.2 實驗設計 24
3.3 腦機介面之訓練部分 26
3.4 受測者的有效頻帶 27
3.5 分類器的計算 28
3.6 腦機介面之回授部分 29

第四章 實驗結果 31
4.1 ERD的結果 31
4.2 最佳化頻帶 36
4.3 分類器的選擇 40
4.4 錯誤率比較與結果分析 41
4.4.1 實際動作和想像動作 42
4.4.2 固定頻帶和受測者特定頻帶 45
4.4.3 想像左右手動作和想像手腳動作 48
4.4.4 實驗次數的增加 51
4.4.5 無回授和有回授 54
4.4.6 權重向量的更新 57

第五章 結論與未來展望 62
5.1 結論 62
5.2 未來展望 63

附錄 65
參考文獻 68
參考文獻

[1] L. Farwell, E. donchin,“Taking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials,”Electroenceph. Clin. Neurophysiol., vol. 70, pp. 510-523, 1981.

[2] A. Hiraiwa, K. Shimohara, Y. Tokunaga,“EEG topography recognition by neural network,”Eng. Med. Biol., pp. 39-42, 1990.

[3] N. Birbaumer, L. E. Roberts, W. Lutzenberger, B. Rockstroh, T. Elbert,“Area-specific self-regulation of slow cortical potentials on the sagittal midline and its effects on behavior,”Electroenceph. Clin. Neurophysiol., vol. 84, pp. 351-361, 1992.

[4] B. Kotchoubey, H. Schleichert, W. Lutzenberger, N. Birbaumer,“A new method for self-regulation of slow cortical potentials in a timed paradigm,”Appl. Psychophysiol. Biofeedback, vol. 22, pp. 77-93, 1991.

[5] Z. A. Keirn, J. I. Aunon,“Man-machine communication through brain-wave processing,”IEEE Eng. Med. Biol., vol. 3, pp. 55-57, 1990.

[6] E. Sutter,“The brain response interface: Communication through visually-induced electrical brain response,”J. Microcomput. Appl., vol. 15, pp. 31-45, 1992.

[7] J. R. Wolpaw, D. J. McFarland, G. W. Neat, C. Forneris,“An EEG-based brain-computer interface for cursor control,”Electroenceph. Clin. Neurophysiol., vol. 78, pp. 252-259, 1991.

[8] J. R. Wolpaw, D. J. McFarland,“Multichannel EEG-based brain-computer communication,”Electroenceph. Clin. Neurophysiol., vol. 90, pp. 444-449, 1994.

[9] G. Pfurtscheller, D. Flotzinger, W. Mohl, and M. Peltoranta,“Prediction of the side of hand movements from single-trial multi-channel EEG data using neural networks,” Electroenceph. Clin. Neurophysiol., vol. 82, pp. 313-315, 1992.

[10] G. Pfurtscheller, M. Pregenzer, C. Neuper,“Visualization of sensorimotor of mu and central beta rhythms in single EEG trials in man,”Neurosci. Lett., vol. 181, pp. 43-46, 1994.

[11] G. Pfurtscheller, J. Kalcher, C. Neuper, D. Flotzinger, M. Pregenzer,“On-line EEG classification during externally-paced hand movements using a neural network-based classifier,”Electroencephal. Clin. Neurophysiol., vol. 99, 416-425, 1996.

[12] G. Pfurtscheller, A. Aranibar,“Evaluation of event-related desynchronization(ERD)preceding and following voluntary self-paced movement,”Electroenceph. Clin. Neurophysiol., vol. 46, pp. 138-146. 1979.

[13] G. Pfurtscheller, A. Berghold,“Pattern of cortical activation during planning of voluntary movement,”Electroenceph. Clin. Neurophysiol., vol. 72, pp. 250-258. 1989.

[14] D. Flotzinger, G. Pfurtscheller, C. Neuper, J. Berger, W. Mohl,“Classification of nonaveraged EEG data by learning vector quantization and the influence of single preprocessing,”Med. Biol. Eng. Comput., vol. 32, pp. 571-576, 1994.

[15] M. Pregenzer, G. Pfurtscheller, D. Flotzinger,“Automated feature selection with a distinction sensitive learning vector quantizer,”Neurocomputing, vol. 11, pp. 19-29, 1996.

[16] J. Kalcher, D. Flotzinger, C. Neuper, S. Golly, G. Pfurtscheller,“Graz brain-computer interface Ⅱ--Toward communication between humans and computer based on online classification of three different EEG patterns,”Med. Biol. Eng. Comput., vol. 34, pp. 382-388, 1996.

[17] G. Pfurtscheller, C. Neuper, A. Schlogl, and K. Lugger,“Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters,”IEEE Trans. Rehab. Eng., vol. 6, pp. 316-325, 1998.

[18] E. Donchin, K. V. Spencer, R. Wijesinghe,“the mental prosthesis:Assessing the speed of a P300-based brain-computer interface,”IEEE Trans. Rehab. Eng., vol. 8, no. 2, pp. 174-179, 2000.

[19] M. Middendorf, G. McMillan, G. Calhoun, S. K. Jones,“Brain-computer interfaces based on the steady-state visual-evoked response,”IEEE Trans. Rehab. Eng., vol. 8, no. 2, pp. 211-214, 2000.

[20] G. Pfurtscheller, C. Neuper, D. Flotzinger, M. Pregenzer,“EEG-based discrimination between imagination of right and left hand movement,” Electroencephalogr. Clin. Neurophysiol., vol. 103. pp.642-651, 1997.

[21] M. Pregenzer, DSLVQ. Aachen, Germany: Schaker Verlag, 1998.

[22] M. Pregenzer, D. Flotzinger, G. Pfurtscheller,“Distinction sensitive learning vector quantization – A noise insensitive classification method,”in Proc. IEEE Int. Conf. Neural Networks ICNN'94, Orlando, FL; Piscataway, NY: IEEE Service Center, pp. 2890-2894, 1994.

[23] T. Kohonen,“ The self-organizing map,”Proc. IEEE, vol. 78, pp. 1464-1480, 1990.

[24] T. Kohonen, Self Organizing Maps. Heidelberg, Germany: Springer, 1995.

[25] D. Flotzinger, J. Kalcher, G. Pfurtscheller,“EEG classification by Learning Vector Quantization,”Biomed. Technik. 37. pp. 303-309, 1992.

[26] G. Pfurtscheller, F. H. Lopes da Silva,“Event-related EEG/MEG synchronization and desynchronization: basic principles,”Clin. Neurophysiol., vol. 110. pp. 1842-1857, 1999.

[27] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlogl, B. Obermaier, M. Pregenzer,“Current Trends in Graz Brain-Computer Interface(BCI)Research”IEEE Trans. Rehab. Eng., vol. 8, pp. 216-219, 2000.

[28] G. Pfurtscheller,“Functional brain imaging based on ERD/ERS”Vision Research 41. pp. 1257-1260, 2001.

[29] C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, G. Pfurtscheller,“How Many People are Able to Operate an EEG-Based Brain-Computer Interface(BCI)?” IEEE Trans. Rehab. Eng., vol. 11, pp. 145-147, 2003.

[30] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, U.K.: Clarendon, 1995.

[31] G. Pfurtscheller, C. Neuper,“Motor Imagery and Direct Brain-Computer Communication,” Proc. IEEE, vol. 89, pp. 1123-1134, 2001.

[32] C. Guger, A. Schlogl, C. Neuper, D. Walterspacher, T. Strein, G. Pfurtscheller, “Rapid prototyping of an EEG-based brain-computer interface(BCI),”IEEE Trans. Rehab. Engng., vol. 9, pp. 49-58, 2001.

[33] J. Kalcher, G. Pfurtscheller,“Discrimination between phase-locked and non-phase -locked event-related EEG activity,”Electroenceph. Clin. Neurophysiol., vol. 94, pp. 381-384, 1995.

[34] M. Pregenzer, G. Pfurtscheller,“Frequency Component Selection for an EEG-based Brain to Computer Interface,”IEEE Trans. Rehab. Engng., vol. 7, pp. 413-419, 1999.

[35] N. Birbaumer, A. kubler,“The thought translation device(TTD)for completely paralyzed patients,”IEEE Trans. Rehab. Eng., vol. 8, pp. 190-193, 2000.

[36] 陳志瑋,“研究以小波神經網路作μ波即時鑑別”國立成功大學機械研究所碩士論文, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔