跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/15 23:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李德淵
論文名稱:以邊緣偵測為基礎的高效率強健式視訊物件分割技術
論文名稱(外文):An Efficient and Robust Edge-based Video Object Segmentation Method
指導教授:林進燈林進燈引用關係
指導教授(外文):Chin-Teng Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:英文
論文頁數:69
中文關鍵詞:初始背景建立視訊物件分割邊緣運算器改變偵測物件追蹤揭開背景
外文關鍵詞:Initial background constructionVideo object segmentationEdge operatorChange detectionObject trackingUncovered background
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出一個新的視訊物件分割演算法。這個視訊物件分割演算法可區分為兩部分:初始背景的建立與物件的追蹤。在第一個部分,我們根據些許連續的影像建立出可信賴的初始背景,並且使用改善過的相連元件法(Modified Connected Component Method)將一張物件影像分割成許多相同灰階的區塊。然後,利用邊緣運算器找出物件的移動邊緣,再依照此資訊找出揭開背景(Uncovered Background)的區塊,最後更新初始背景。而在第二個部分,我們使用背景資訊和邊緣運算器追蹤新物件的邊緣,並透過改變偵測和背景預測的方法移除揭開背景的邊緣,進而抽取出完整的視訊物件。實驗證明利用背景資訊和邊緣資訊,我們可以有效地分割出精確的物件並且改善以往只用改變偵測(Change detection)作為視訊物件分割的缺點。
In this thesis, we propose a new video object segmentation algorithm. The video object segmentation algorithm consists of two major parts: initial background construction and object tracking. In the first part, we construct the reliable initial background in several consecutive frames and use modified connected component to partition an object image into many blobs with similar luminance. Then, we use edge operator to find the moving edge and use it to find the uncovered background blob. Finally, the initial background frame could be updated. In secondary part, we use background information and edge operator to find the moving edge of the object. Then, the uncovered background edge is removed by using the change detection method and background predictive method. Further, the perfect video object could be extracted. According to the experimental results, the proposed method combining background information and edge information can greatly improve the performance of precise object segmentation compared with the conventional change detection approaches.
[1] MPEG-4 video verification model version 15.0, ISO/IEC JTC1/SC29/WG11 N3093, 1999
[2] Information Technology—Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to About 1.5 mbit/s, ISO/IEC 11 172, 1993.
[3] Information Technology—Generic Coding of Moving Pictures and Associated Audio Information, ISO/IEC 13 818, 1994.
[4] C. Kim, and J.N. Hwang, “Fast and automatic video object segmentation and tracking for content based applications,” in IEEE of Transactions on circuit and systems for video technology, vol.12, 2002, pp. 122-129.
[5] L.G.Chen, “Efficient moving object segmentation algorithm using background registration technique,” in IEEE of Transactions on circuit and systems for video technology, vol.12, 2002, pp. 577-586.
[6] A. Cavallaro, “Multiple video object tracking in complex scenes,” in Proc. Of the ACM multimedia conference, 2002, pp. 523-532.
[7] Yaakov Tsaig and Amir Averbuch, “Automatic segmentation of moving objects in video sequences: a region labeling approach,” in IEEE of Transactions on circuit and systems for video technology, vol.12, 2002, pp. 597-612.
[8] J.G. Choi et al, “A vop generation tool: automatic segmentation of moving objects in image sequences based on spatial temporal information,” in IEEE of Transactions on circuit and systems for video technology, vol.9, 1999, pp. 1216-1226.
[9] R. Mech and M. Wollborn, “A noise robust method for 2D shape estimation of moving objects in video sequences considering a moving camera,” Signal Processing, vol.66, 1998, pp. 203–217.

[10] T.Meier and K.N. Ngan, “Automatic segmentation of moving objects for video object plane generation,” in IEEE of Transactions on circuit and systems for video technology, vol.8, 1998, pp. 525-538.

[11] D.Wang, “Unsupervised video segmentation based on watershed and temporal tracking,” in IEEE of Transactions on circuit and systems for video technology, vol.8, 1998, pp. 539-546.
[12] A. Neri, S. Colonnese, G. Russo, and P. Talone, “Automatic moving object and background separation,” in Signal Processing, vol.66, 1998, pp. 219-232.
[13] T. Aach, A. Kaup, and R. Mester, “Statistical model-based change detection in moving video,” Signal Processing, vol.31, 1993, pp. 165–180.
[14] J. K. Aggargwal and N. Nandhakumar. On the Computation of Motion from Sequences of Images-- A Review. Proc. of the IEEE, 76(8):917-935, 1988.

[15] S. S. Beauchemin and J. L. Barron. The Computation of Optical Flow. ACMComputing Surveys, 27(3), Sept. 1995.

[16] Norbert Diehl. Object-Oriented Motion Estimation and Segmentation in Image. Sequence Signal Processing: Image Communication 3: 23-56, 1991.

[17] David Murry and Bernard Buxton. Scene segmentation from visual motion using
global optimization. IEEE PAMI 9(2) 1987.

[18] C. Stiller and J. Konrad. Estimating motion in image sequences: A tutorial on modeling and computation of 2D motion. IEEE Signal Process. Magazine 16:70-91, July 1999.

[19] Robert Thoma and Matthias Bierling. Motion Compensating Interpolation Considering Covered and Uncovered Background. Signal Processing: Image Communication 1 (1989) 191-212.

[20] A. Murat Tekalp. Digital Video Processing. Prentice Hall PTR.

[21] P. H. S. Torr and D. W. Murray. Statistical detection of independent movement from a moving camera Image and Vision Computing 1(4):180-187, May 1993.

[22] P. H. S. Torr. Motion Segmentation and Outlier Detection. Ph.D thesis, University of Oxford, 1995.

[23] A. Papoulis. Probability and statistic, Prentice Hall, 1990.

[24] C.W. Therrien. Decision, estimation and claasification, Wiley, NewYork, 1989.

[25] Rosenfeld A., Pfaltz J.L., “Sequential operations in digital processing” in JACM, vol.13, 1996, pp.471-494.
[26] J. Canny, "computational approach to edge detection,” IEEE Transactions on Pattern Anal. Machine Intell, vol. PAMI-8, 1986, pp. 679–698.
[27] N. Mukawa and H. Kuroda, “Uncovered background prediction in interframe coding,” IEEE Trans. Commun., vol. COM-33, pp. 1227–1231, Nov. 1985.

[28] D. Hepper, “Efficiency analysis and application of uncovered background prediction in a low bit rate image coder,” IEEE Transactions Commun., vol. 38, pp. 1578-1584, Sept. 1990.

[29] Rafael C. Gonzalez. Digital Image Processing, Prentice Hall 2002.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 劉淑範,<公法上結果除去請求權之基本理論>,《政大法學評論》72期,2002年12月,1頁以下。
2. 何賴傑,<正當法律程序原則-刑事訴訟法上一個新的法律原則?>,《憲政時代》25卷4期,2000年4月,33頁以下。
3. 江舜明,<監聽界限與證據排除>,《法學叢刊》172期,1998年10月,94頁以下。
4. 鄧湘全,<通訊監察之合憲性探討>,《月旦法學雜誌》40期,1998年9月,102頁。
5. 蔡墩銘,<通訊監聽與證據排除>,《刑事法雜誌》39卷1期,1995年2月,1頁以下。
6. 蔡墩銘,<監聽與強制處分>,《法令月刊》42卷6期,1991年6月,5頁。
7. 江舜明,<監聽在刑事程序法上之理論與實務>,《法學叢刊》168期,1997年,99頁以下。
8. 楊雲驊,<得一方同意之監聽>,《月旦法學教室》28期,2005年2月,22-23頁。
9. 楊雲驊,<法官保留與檢察官的緊急搜索權>,《法學講座》5期,2002年5月,1頁以下。
10. 楊雲驊,<證據使用禁止在個案上的判斷過程-以電話分機聆聽案為例>,《東吳法律學報》13卷2期,2002年2月,61頁以下。
11. 陳樸生,<論刑事訴訟之證據排除與禁止(一)、(二)、(三)、(四)>,《軍法專刊》38卷8期,1992年8月,2頁以下、9期,1992年9月,2頁以下、10期,1992年10月,2頁以下、11期,1992年11月,2頁以下。
12. 陳仟萬,<論監聽與錄音>,《法令月刊》第49卷第3期,1998年,6頁。
13. 何賴傑,<錄音、錄影、電磁紀錄等之調查(刑事訴訟法第一六五條之一第二項)>,《全國律師》,2004年9月,33頁以下。
14. 黃惠婷,<另案監聽>,《月旦法學教室》第26期,2004年12月,113頁以下。
15. 張麗卿,<論違法取得證據之排除(二)>,《軍法專刊》33卷4期,1987年4月,28頁以下。