跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林婉婷
研究生(外文):lin,wang-ting
論文名稱:平面金屬次波長微孔應用於光學讀寫頭之近場研究
論文名稱(外文):Study of Near-Field of Planar Metallic Aperture Applied to Optical Pickup via FDTD
指導教授:謝漢萍謝漢萍引用關係
指導教授(外文):Hang-Ping Hsieh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:83
中文關鍵詞:近場時域有限差分法次波長
外文關鍵詞:near-fieldFDTDsub-wavelength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
平面金屬次波長微孔可被利用於讀寫頭中以克服繞涉極限達到縮小光點的的目的。可是傳統的方型微孔的光穿透效率很低。我們利用光束傳播法和有限時域差分法來模擬整個光學讀取頭,進而研究c型微孔跟方形孔的出光場包括光穿透效率,最大電場強度跟光點大小。當在相似的近場光點大小下,C型微孔提供的光穿透效率約為方型微孔的一千倍。

我們也考量金屬特性且進行c型孔尺寸的最佳化,而我們利用聚焦式離子束顯微鏡(Focused Ion Beam)來做製程且利用近場掃描式光學顯微鏡( Near- Field Scanning optical Microscopy)進行觀察出光。
Optical resolution beyond the optical diffraction limit can be achieved by use of nano metallic aperture in a near-field system. The metallic aperture was utilized in fiber-based integrated optical pickup system to sustain the spatial resolution as the spot size was determined by the nano metallic aperture. However the problem encountered of conventional aperture was the extremely low power throughput.

In this thesis, the properties of the field distribution from the square and C-shaped apertures were be characterized and the C-shaped aperture was found to provide 3 order of magnitude more power throughput than square aperture under the condition that perfect conductor with negligible thickness was assumed. The characteristic features of metal were taken into consideration for real case. The fabrication of the aperture was carried out by FIB and the measurement
Contents

Title……………………………………………………………..i
Abstract (Chinese)……………………………………………iii
Abstract (English)……………………………………………..v
Acknowledgments……………………………………………vi
Table of contents…………………………………………….vii
Figure caption………………………………………………...xi
List of tables………………………………………………....xiv

Chapter 1
Introduction
1.1 History ……………………..……………………..1
1.2 Overview of data storage……..………………..1
1.3 Hybrid recordin………………..……………….…3
1.3.1 Magneto-optical writing proces………………...5
1.3.2 Magneto-optical recording process…………6
1.4 Miniaturization of pickup head……………….7
1.4.1 Planar pickup based on glass substrate light guide ………..………8
1.4.2 Free space micro-optical bench ………………………..………..9
1.4.3 Integrated-optic implementation based on waveguides and holographic components…………………………………..………………10
1.4.4 Fiber-based integrated optical pickup ………………....…………11
1.5 Research objective ………………………………….…..….………….12

Chapter 2
Principles
2.1 Introduction…………………………………………………...……………….14
2.2 Electromagnetic Relations……………………………………….……………14
2.2.1 Maxwell’s equations and constitutive relations …………….……………..14
2.2.2 Energy …………………………………………………….……………….17
2.3 Propagation of light through a subwavelength aperture ………….……..….17
2.3.1 Bethe’s small-hole theory for square aperture…………….……………….18
2.3.2 C-shaped aperture …………………………………………………………19
2.3.3 Ridged waveguide …………………………………………………………21
2.4 Metal assumption ……………………………..……………...………………...27
2.4.1 Penetration depth …………………………………………………………..28
2.4.2 Dispersion relation …………………………………...……………………30
2.4.3 Dielectric function of metals……………………………………………….31
2.5 surface modes ….………………………………..……..……………………….33
2.6 simulation method for subwavelength aperture …...…..……………………..35
2.6.1 The FDTD method ……………………………….………………………..36
2.6.2 The YEE Algorithm ……………………………….……………………….37
2.6.2.1 Central difference accuracy ……………………….………………..37
2.6.2.2 FDTD spatial discretization ……………………….………………..37
2.6.3 Materials and material interfaces ……………………….………………….40
2.6.4 Boundary conditions ………………………………….……………………42

Chapter 3
Fabrication and measurement equipment
3.1 Nano-aperture fabrication process ………………………..…………………45
3.1.1 Focused ion beam (FIB) ………………………………………………….46
3.2 Measurement system ………………………………………………………….47
3.2.1 The Near-field Scanning Optical Microscope (NSOM) ………………….48
3.2.2 Modes of operation ……………………………………………….………48
3.2.3 Feedback ………………………………………………………………….50

Chapter 4
Simulations and discussions
4.1 Introduction …………………………………..……………………………….52
4.2 simulation software ……………………….…………………………………..53
4.2.1 BeamProp ………………………………….……………………………..53
4.2.2 Fullwave ………………………………………………………………….54
4.3 Start with infinitesimally thin and perfectly conducting planes ………...…54
4.3.1 bare square aperture ………………………………………………………55
4.3.2 C-shape aperture ……………………………………………….…………56
4.3.3 Combination of SIL and aperture …………………………….…………..59
4.3.4 Comparison ………………………………………………………………59
4.4 Properties of metals taken into considered in real case
4.4.1 Bare square aperture surrounding metal screen ………………….………60
4.4.2 c-shaped aperture surrounding metal screen …………………….……….63
4.4.3 Comparison ………………………………………………………………69

Chapter 5
Fabrication and measurement
5.1 Fabrication (Focused Ion Beam) ………………………………………………70
5.2 experiment (Near-field Scanning Optical Microscope) ……...……………….74
Chapter 6
Conclusions
6.1 conclusions ……………………………………………...………………………77
6.2 future works …………………………………………………………………….78
Reference

Reference in Chaper 1

[1] http:// www.oneoffcd.com/info/historycd.cfm
[2] J. L. Hennesey and D. A. Patternson, computer organization and design: the hardware/software interface, 2nd ed., Morgan Kauffmann publishers, 1998
[3] http://www.wtec.org/loyola/hdmem/toc.htm
[4] http://www.usbyte.com/common/compact_disk_3.htm
[5] http://www.disctronics.co.uk/technology/dvdintro/dvd_intro.htm
[6] http://www.sel.sony.com/SEL/rmeg/mediatech/overview.html
[7] http://www.sony.net/Products/DataMedia/features/phase_change/phase_change2.html
[8] http://iomega.com/zip
[9] J. Hong, “Spin-Valve GMR Head with Specularly Reflective Oxide Layers,” Paper A4, Presented at TMRC 2001, Minneapoils, MN, 2001
[10] S. H. Charap, P. L. Lu and Y. He, “Thermal stability of recorded information at high densities,” IEEE Tran. Magn. 33, 978 (1997)
[11] J.J. M. Ruigrok, R.Coerhoorn, S.R. Cumpson and H. W. van Kesteren, “Disk recording beyond 100 Gb/ : hybrid recording?” J. Appl. Phys. 87, 5398 (2000)
[12] T. Rausch, J. A. Bain, D. D. stencil and T.E. Schlesinger, “Near-field hybrid recording with a mode index waveguide lens,” Proc. SPIE. Optical Data Storage 4090, 66(2000)
[13] H. Katayama, S. Sawamura, Y. Ogimoto, J. Nakajima, K. Kojima and K. Ohta, ”New magnetic recording method using laser assisted read/write technologies,” J. Magn. Soc. Jpn. 34, 1651 (1998)
[14] H.Saga, H. Nemoto, H.Sukeda and M.Takahashi, “New recording method combining thermo-magnetic writing and flux detection, “ Jpn. J. Appl. Phys. 38, 1839(1999)
[15] M Alex, T. Valet, T. McDaniel and C. Brucker, “Optically assisted magnetic recording,” J. Magn. Soc. Jpn. 25, 328(2001)
[16] T. Shiono and H. Ogawa: Appl. Opt. Vol. 33, p. 7350, 1994.
[17] L. Y. Lin, J. L. Shen, S. S. Lee and M. C. Wu: Opt. Lett. Vol. 21, p.155, 1996.
[18] S. Ura, T. Suhara, Nishihara and J. Koyama: J. Lightwave tech. Vol. 7, p.913, 1986.
[19] K. Kato, S. Ichihara, N. Kasama, M. Oumi, T. Niwa, Y. Mitsuoka, and K. Nakajima: Seiko Instruments Inc. ISOM 2000, p.188.
[20] T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura and Y. Zhang, Jpn. J. Appl. Phys. 40, 1778 (2001).

Reference in Chaper 2

[1] E. A. Ash and G. Nicholls, Nature 237, 510 (1972)
[2] D. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[3] A.Lewis, M. Isaacson, A. Harootunian, and A. Muray, Ultramicroscopy 13, 227 (1984)
[4] David K. Cheng , Field and Wave Electromagnetics, Addison-Wesley, 1989
[5] X. Shi and L. Hesselink, Jpn. J. Appl. Phys. 41, 1632 (2002).
[6] D. W. Pohl and D. Courjon (eds.), Near-Field Optics, 147-156
[7] H. A. Bethe, Phys. Rev. 66, 163 (1944)
[8] J.R. PYLE, IEEE trans. Microwave Theory Tech., VOL. MTT-14, pp.175 (1966).
[9] A. K. Sharma and W. J. R. Hoefer, IEEE trans. Microwave Theory Tech., VOL. MTT-31, pp.350 (1983).
[10]
[11] Eugene Hecht, Optics, Addison-Wesley,1998
[12] Kawata, Satoshi, Near-field optics and surface plasmon polaritons, Berlin ;Springer,New York.
[13] Handbook of Optical Constants of Solids, ed. E. D. Palik (Academic Press, New York, 1998).
[14] H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, and H. J. Leaec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779.
[15] Agranovich V. M. ed., Mills D. L. ed, Surface polaritons : electromagnetic waves at surfaces and interfaces, Amsterdam, North-Holland, 1982.
[16] H. Raether: Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1998)
[17] D. E. Grupp, H.J. Lezec, T. W. Ebssen, K.M Pellerin and T.Thio, Apply. Phys. Lett.77
[18] K. S. Yee, IEEE Trans. Antennas and Prop. 14, 302-7 (1996)
[19] http://www.rsoftdesign.com/
[20] Taflove, Allen., Hagness, Susan C. Artech House, Computational electrodynamics:the finite-difference time-domain method, Boston :Artech House,c2000.

Reference in Chapter 3

[1] J.P. Fillard, Near field optics, Singapore, World Scientific, c1996
[2] http://www.nanonics.co.il/main/twolevels1.php?ln=en&main_id=14
Reference in Chapter 4
[1] CRC handbook of chemistry and physics, ed. Weast, Robert C. (CRC Press, Boca Raton, Florida, 1988).

Reference in Chapter 6
[1] T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura and Y. Zhang, Jpn. J. Appl. Phys. 40, 1778 (2001).
[2] T. Shiono and H. Ogawa: Appl. Opt. Vol. 33, p. 7350, 1994
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top