跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/17 00:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:易國榮
研究生(外文):Kuo-Jung Yi
論文名稱:網路化雙重情境學習模式對國小學生的真菌概念改變之研究
論文名稱(外文):The Impacts of Web-based Dual Situated Learning Model on Elementary Students' “Fungi” Conceptual Change Process
指導教授:佘曉清佘曉清引用關係
指導教授(外文):Hsiao-Ching She
學位類別:碩士
校院名稱:國立交通大學
系所名稱:理學院網路學習碩士在職專班
學門:教育學門
學類:教育科技學類
論文種類:學術論文
畢業學年度:92
語文別:中文
論文頁數:112
中文關鍵詞:網路學習真菌雙重情境學習黴菌
外文關鍵詞:web-based learningfungiDual Situated Learningmold
相關次數:
  • 被引用被引用:9
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究的目的是針對國小五年級學生在真菌中的黴菌另有概念,進行準實驗設計的『網路化雙重情境學習模式』概念改變教學研究。
研究的方法是先分析黴菌概念的屬性、找出學生對黴菌的另有概念並依此分析出學生對於建構完整的黴菌概念所缺少的心智結構,再設計出『網路化雙重情境∼黴菌教學網站』,然後運用此『網路化雙重情境∼黴菌教學網站』進行為期一個月的概念改變教學。研究資料蒐集包括自然與生活科技學業成績、自然與生活科技學習動機問卷、黴菌單元成就測驗、概念改變歷程測驗及網路學習環境問卷等。
研究結果發現自然與生活科技學業成就的背景因素對黴菌單元學習成就具有高度正向的影響力,而採用網路化雙重情境學習模式將會比傳統教學模式更有助於提升學生對黴菌另有概念改變的學習成效且可以獲得更好的學習保留效果。尤其在不同教學模式與學業成就兩變項的交互作用影響分析中發現,高、低學業成就對照組(傳統教學)的學習成就平均數差距比高、低學業成就實驗組(網路化雙重情境學習)的差距來得大,且低學業成就實驗組比低學業成就對照組所進步的幅度大,顯示低學業成就的學生可因採用此網路化雙重情境學習模式而有更顯著的進步。
根據概念改變歷程測驗結果,顯示經過網路化雙重情境學習模式後擁有科學概念的學生比例均有增加的趨勢,相對的擁有另有概念的比例則有下降的趨勢,並且有80%∼90%的學生能成功將新概念運用於新的情境問題中,顯示網路化雙重情境學習模式確實有助於學生在黴菌另有概念改變的學習。
而高內在目標導向價值學習動機的學生比低內在目標導向價值學習動機的學生,在黴菌單元成就後測上有較高的學習成效,但是其他向度的學習動機對於學習成就並沒有顯著的影響。另外,學生對於黴菌概念學習網的網路學習環境給予高度正向的評價,而學生對網路學習環境中『知識重整』向度的評價與其學習成就表現呈現出正向的預測力。
The purpose of this study aims to examine the nature and effects of elementary students’ conceptual change on fungi (specifically focus on molds) through the use of web-based Dual Situated Learning Model (DSLM). The steps of development of fungi related web-based DSLM science learning is to (1). examine the attributes of fungi, (2). probe students’ misconception of fungi, (3). analyze which mental sets of fungi students’ lack, (4). design web-based dual situated learning events, and (5). instruct with web-based dual situated learning events for a month. Data collection includes students’ academic scores of science, the questionnaire of students’ learning interest, the achievement test of fungi (pre, post and retention), the process of conceptual change, and the questionnaire of web-learning environment.
Results show that experimental group’s (web-based DSLM science learning) performed statistic significant better on both post-test and retention-test than control group (traditional teaching), regardless high or low achieving students. In addition, high achieving students performed statistic significant better on both post-test and retention-test than low achieving students, regardless experimental or control groups. It indicated that the use of web-based DSLM science learning program would bring students better performance and retention effect than traditional instruction. Particularly, results also indicated that the use of web-based DSLM science learning program would significant promoting low achieving students’ learning effects than traditional instruction.
Based upon the process of conceptual changes, it indicated that the use of web-based DSLM science learning bring about 80%-90% students finally getting more scientific view of fungi on most part except the concepts of growing environment of fungi. Interestingly, only intrinsic goal oriented and high value component two motivation scales had influence on student’s post-test performance. Students also perceive high and positive toward our web-based DSLM science learning environment. It also shows that student’s perception of the scale of reorganization on web-learning environment had positive correlation with students’ post-test.
目錄
� � � � � � � � � � � � � � � � � � �� � � �頁 次
中文摘要 Ⅰ
英文摘要 Ⅲ
致謝 Ⅳ
目錄 Ⅴ
表目錄 Ⅶ
圖目錄 Ⅸ
第一章 緒論 1
�第一節�研究動機與目的 1
�第二節�研究的重要性 3
�第三節�研究問題與假設 4
�第四節�名詞釋義 5
�第五節�研究範圍與限制 5
第二章�文獻探討 6
�第一節�另有概念的探究 6
�第二節 概念改變的理論與教學 10
�第三節 網路與科學學習 19
�第四節 真菌教學研究 26
�第五節 學習動機 29
第三章�研究方法 31
�第一節 研究對象 31
�第二節 研究設計 32
�第三節 研究流程 33
�第四節 研究工具設計 33
�第五節 教學設計 46
�第六節 資料蒐集與分析 48
第四章�研究結果與討論 50
�第一節 網路化雙重情境概念改變教學分析 50
�第二節 自然與生活科技學習動機問卷 73
�第三節 網路學習環境問卷 79
第五章�結論與建議 83
�第一節 結論與討論 83
�第二節 建議 88
參考文獻 91
附錄一�黴菌概念學習網網站規劃 97
附錄二�黴菌概念網路化雙重情境教學活動設計 100
附錄三�黴菌單元成就測驗 105
附錄四�學生學習動機問卷 109
附錄五�網路學習環境量表 111
一、中文部分
王美芬、熊召弟(1995)。國民小學自然科教材教法。台北:心理出版社。
吳明隆(2003)。SPSS統計應用學習實務。台北:知城數位科技。
吳美麗(2002)。臺灣真菌多樣性資源與研究現況。環境教育學刊,1,143-163。
佘曉清(1997)。二十一世紀的科學教育∼科技如何豐富科學教育。教學科技與媒體,33,12-19。
周倩、楊台恩(1998)。電腦網路的特質與相關問題初探。社教雙月刊,84,17-20。
林奇賢(1998)。網路學習環境的設計與應用。資訊與教育,67,34-50。
林建平(1997)。學習輔導∼理論與實務。台北:五南出版社。
林建平(2003)。學習動機的認知理論及其在教育上的應用。國教新知,49(3),17-27。
邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
邱皓政(2000)。量化研究與統計分析。台北:五南出版社。
邱照麟(2000)。國小學童「空氣」概念之研究。國立屏東師範學院國民教育研究所未出版之碩士論文。
徐雍智、蔡今中和陳明璋(2002)數學創意類比與同儕評量及其網路案例設計之初探。師大學報:科學教育類,47(1),1-14。
唐小媛、佘曉清(2003)。國中生「動物生殖」另有概念成因分析。第十九屆科學教育學術研討會,台北市,國立台灣師範大學。
張春興(1996)。教育心理學-三化取向的理論與實踐(修訂版)。台北市:東華書局。
張惠博(1999)。迷思概念的研究方法。科學概念學習研究研習會,台北市,國立台灣師範大學。
郭重吉(1992)。從建構主義的觀點探討中、小學數理教學的改進。科學發展月刊,20(5),548-570。
郭重吉、董正玲(1992)。利用晤談方式探究國小兒童運動與力概念的另有架構。科學教育,3,93-123。
游文楓、佘曉清(2003)。網路化問題解決教學策略對學生生物學習成效的影響。第十九屆科學教育學術研討會,台北市,國立台灣師範大學。
葉增勇(2003)。真菌與人生。科學教育,256,46-48。
楊錦潭(1996)。媒體教學與數學教育。教學科技與媒體,27,3-9。
廖遠光、黃淑敏(2003)。電腦網路學習與傳統教學對學生學習成效影響之後設分析。管理與教育研究學報,1,161-182。
熊召弟、王美芬、段曉林、熊同鑫譯(S.M Glynn & R.H Yeany著)(1996)。科學學習心理學。台北:心理出版社。
鄭湧涇、楊榮祥、曾哲明和林金盾(2001)。高中教科用書∼生命科學上冊。台北:大同資訊出版。
鍾玉茹(2001)。國中、國小學童對常見真菌之概念認知研究。國立台北師範學院數理教育研究所未出版之碩士論文。




二、英文部分
Bandura, A. (1986) . Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs, NJ: Prentice- Hall, Inc.
Carey, S. (1986). Cognitive science and science education. American Psychologist, 1, 1123–1130.
Chan, T. W. & Chou, C. Y. (1997). Exploring the design of computer supports for reciprocal tutoring. International Journal of Artifical Intelligence in Education, 8(1), 1-29.
Chang, V..& Fisher, D. (2003). The validation and application of a new learning environment instrument for online learning in higher education. In Khine, M. S., & Fisher, D. (Eds.), Technology-rich learning environments: A future perspective, 1-20. Singapore: World Scientific.
Chi, M.T.H., Slotta, J.D., & deLeeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and instruction, 4, 27-43.
Chinn, C. & Brewer, W. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63, 1–49.
Chou, C., & Tsai, C.C. (2002). Developing web-based curricula:issues and challenges. Journal of Curriculum Studies, 34,(6), 623-636.
Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students' preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241-1257.
Covington, M. V. (1992). Making the grade: A self-worth perspective on motivation: Findings and implications. NY: Cambridge University Press.
Driver, R.(1981). Pupils’ alternative frameworks in science. European Journal ofScience Education, 3(1), 93-101.
Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13, 105-122.
Duit, R. (1995). Conceptual Change Approaches in Science Education. Paper presented at the Symposium on conceptual change, Friedrich-Schiller University, Jena, Germany.
Duit, R. (1999). Conceptual change approaches in science education. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New perspectives on conceptual change. Kidlington, Oxford: Elsevier Science.
Dykstra, D. I., Boyle, C.F., & Monarch, I. A. (1992). Studying conceptual in learning physics. Science Education, 76(6), 615-652.
Fraser, B.J., Treagust, D.F., & Dennis, N.C. (1986). Development of an instrument for assessing classroom pyschosocial environment in universities and colleges. Studies in Higher Education, 11(1), 43-54.
Gabel, D. L., Samuel, K. V. & Hunn, D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education, 64, 695–697.
Head, J.(1986). Research into “Alternative Frameworks”: promise and problems. Research in Technological Education, 4(2), 203-211.
Jonassen, D.H. (1997). Instructional design models for well-structured and ill-structured problem-solving learning outcomes. Educational Technology: Research and Development, 45, 65–94.
KIE (2004). Knowledge Integration Environment. Retrieved June 8, 2004, from http://kie.berkeley.edu/KIE/curriculum/curriculum.html
Linn, M.C., Clark, D.B. & Slotta, J.D. (2003). WISE Design for Knowledge Integration. Science Education, 87, 517-538.
Leung, H. K. N.(2003) Evaluating the Effectiveness of e-Learning. Computer Science Education, 13(2), 123-1336.
Margulis, L. (1981). How Many kingdoms? Current Views of Biological Classification. The American Biology Teacher, 41(9), 530-533.
Mintzes, J. J., Wandersee, J. H. & Novak, J. D. (1998). Teaching science for understanding –a human constructivist view. California, Harcourt Brace & science education. (3nd ed.). Kiel, West Germany: University of Kiel, IPN Reports in Brief.
Murray, T., Schultz, K., Brown, D. & Clement, J. (1990). An analogy-based computer tutor for remediating physics misconceptions. Interactive Learning Environments, 1, 79–101.
O’Neill, D.K., & Gomez, L.M. (1994). The collaboratory notebook:A networked knowledge-building environment for project learning. In Educational Multimedia and Hypermedia. Symposium conducted at ED-MEDIA/ED-TELECOM 94 World Conference, Vancouver, British Columbia, Canada.
Osborne, R. & Freyberg, P. (1985). Learning in Science: The Implication of Children’s Science. Auckland: Heinemann.
Osborne, R. & Gilbert, J. (1980). A method for investigating concept understanding in science. European Journal of Science Education, 2, 311–321.
Pfundt, H. & Duit, R. (1991). Biblography: Students’ alternative framework and science education. (3rd ed.). Kiel, West Germany: IPN.
Posner, G.J., Strike, K.A., Hewson, P.W., & Gertzog, W.A.(1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.
Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self- regulated learning components of classroom academic performance. Journal of Educational Psychology, 82, 33- 40.
Pintrich, P.R. (1999). Motivational beliefs as resources for and constraints on conceptual change. In W. Schnotz, S. Vosniadon, & M. Carretero (Eds.), New perspectives on conceptual change. Kindlington, Oxford, UK: Elsevier Science.
Pintrich, P.R., Marx, R.W., & Boyle, R.A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 167–200.
Pintrich, P.R. & Schrauben, B. (1992). Students’ motivational beliefs and their cognitive engagement in classroom academic tasks. In D. Schunk & J. Meece (Eds.), Student perceptions in the classroom: Causes and consequences. Hillsdale, NJ: Erlbaum.
Shafer, M.E., Lahner, J. M., Calderone, W. K., Davis, J. E., & Petrie, T. A. (2002). The use and effectiveness of a web-based instructional supplement in a college student success program. Journal of College Student Development, 43(5), 751-757.
She, H.C. (2002). Concepts of a higher hierarchical level require more dual situated learning events for conceptual change: a study of air pressure and buoyancy. International journal of science education, 24(9), 981-996.
She, H.C. (2003). DSLM Instructional Approach to Conceptual Change Involving Thermal Expansion. Research in Science and Technological Education, 21(1), 43-54.
She, H.C. & Fisher, D. (2003). Web-based E-learning Envrionment in Taiwan: The impact of the online science flash program on students’ learning. In Khine, M. S., & Fisher, D. (Eds.), Technology-rich learning environments: A future perspective. Singapore: World Scientific.
She, H.C. (2004). Fostering radical conceptual change through dual-situated learning model. Jornal of Research in Science Teaching, 41(2), 142-164.
She, H.C. (2004). Facilitating studnets’ learning of difficult science concepts through integrating a metacognitive approach into a web-based multimedia science leanring program. Accepted by the International Conference on Computers and Advanced Technology in Education (CATE), Kaiwai, Hawaii.
Taylor, R. D., (ED.). (1980). The computer in the school:tutor,tool,tutee. New York: Columbia teachers’ College.
Thagard, P. (1992). Conceptual Revolutions. Princeton, NJ:Princeton University Press.
Tsai, C.C. (2000). Enhancing science instruction: The use of “conflict maps”. International Journal of Science Education, 22, 285-302.
Vosniadou, S. & Brewer, W.F. (1994). Mental models of the day/night cycle. Cognitive Science, 18, 123–183.
Wandersee, J.H., Mintzes, J.J., & Novak, J.D. (1994). Reserach on alternative onceptions in science. In Gabel, D. L. (Ed.) Handbook of reserach on science teaching and learning, 177-210. New york: Macmillan Publishing Company.
Wang, S.L. & Lin, S. S. J. (2000). The Cross-culture Validation of Motivated Strategies for Learning Questionnaire. Paper presented at the 2000 Annul Conference of American Psychological Association. Washington D.C.
Weiner, B. (1992). Human Motivation: Metaphors, Theories, and Research. Newbury Park, CA: Sage Publications, Inc.
WISE(2004).The Web-based Inquiry Science Environment. Retrieved June 8, 2004, from http://wise.berkeley.edu/welcome.php
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top