[1]Grate J. W., S. J. Martin, R. M. White, “Acoustic wave microsensors.” Anal. Chem. 1993, 65, A940-A948.
[2]Lu C., and A.W. Czanderna(Eds.), “Application of Piezoelectric Quartz Crystal Microbalance.” Elsevier Science Publishing Company Inc. 1984.
[3]Konash P. L., and G. J. Bastiaans, “Piezoelectric Crystal as Detectors in Liquid Chromatography.” Anal. Chem. 1980, 52, 1929-1931.
[4]Nomura T., “Single-Drop Method for Determination of Cyanide in Solution with a Piezoelectric Quartz Crystal.” Anal. Chim. Acta. 1981, 124, 81-84.
[5]Nomura T., and M. Iijima, “Electrolytic Determination of Nanomolar Concentrations of Silver in Solution with a Piezoelectric Quartz Crystal.” Anal. Chim. Acta. 1981, 131, 97-102.
[6]Thompson M., C. L. Arthur, G. K. Dhaliwal, “Liquid-Phase Piezoelectric and Acoustic Transmission Studies of Interfacial Immunochemistry.” Anal. Chem. 1986, 58, 1206-1209.
[7]Murumatsu H., K. Kajiwara, E. Tamiya, and I. Karube, “Piezoelectric Immuno Sensor for the Detection of Candida albicans Microbes.” Anal. Chem. 1986, 188, 257-261.
[8]Zubay G. L., W. W. Parson, D. E. Vance, Principles of Biochemistry, McGraw-Hill, Inc. 1995.
[9]King W. H., “Piezoelectric Sorption Detector.” Anal. Chem. 36, 1735-1739.
[10]Leyva J. A. M., J. L. H. H. Decisneros, D. G. G. Debarreda, “ A Coated Piezoelectric Crystal Sensor for Acetic-Acid Vapor Determination.” Talanta 1993, 40, 1725-1729.
[11]Okahata Y., H. Ebato, “Synthetic Chemoreceptive Membranes .11. Detection of Odorous Substances by Using a Lipid-Coated Quartz-Crystal Microbalance in the Gas-Phase.” Bulle. Chem. Soc. Jpn., 63,3082-3088.
[12]Sauerbrey G. Z., “Verwendung von Schwingquarzen zur Wagung dunner Schichten undzur Mikrowagung.” Z. Phys. 1959, 155, 206-222.
[13]Muratsugu M., F. Ohta, Y. Miya, T. Hosokawa, N. Kamo, H.Ikeda, “Quartz Crystal Microbalance for the Detection of Microgram Quantities of Human Serum Albamin:Relationship between the Frequency Change and the Mass of Protien Asorbed.” Anal. Chem. 1993, 65, 2933-2937.
[14]Barnes C., C. D’Silva, J. P. Jones, T. J. Lewis, “Lectin Coated Piezoelectric Crystal Biosensors.” Sensor Actuat B-Chem. 1992, 7, 347-350.
[15]Konig C., M. Gratzel, “Development of a Piezoelectric Immunosensor for the Detection of Human Erythrocytes.” Alalytic Chimica. Acta. 1993, 276, 329-333.
[16]KoBlinger C., S. Drost, F. Aberl, H. Wolf, S. Koch, P. Woias, “A Quartz Crystal Biosensor for Measurement in Liquid.” Biosens. Bioelectron. 1992, 7, 397-404.
[17]Konig C., M. Gratzel, “A Novel Immunosensor for Herpes Viruses.” Anal. Chem. 1994, 66, 341-344.
[18]Konig C., M. Gratzel, “Detection of Human T-lymphocytes with a Piezoelectric Immunosensor.” Alalytic Chimica. Acta. 1993, 281, 13-18.
[19]Muramatsu H., J. M. Dicks, I. Karube, E. Tamiya, “Piezoelectric Crystal Biosensor Modified with Protein-A for Determination of Immunogrobulins.” Anal. Chem. 1987, 59, 2760-2763.
[20]Geddes N. J., E. M. Paschinger, D. N. Furlong, Y. Ebara, Y. Okahata, K. A. Than, J. A. Edgar, “Piezoelectric Crystal for the Detection in Buffer Solutions.” Sensor Actuat B-Chem. 1994, 17, 125-131.
[21]Muramatsu H., K. Kajiwara, E. Tamiya, I. Karube, “Piezoelectric Immunosensor for the Detection of Cabdida Albicans Microbes.” Alalytic Chimica. Acta. 1986, 188, 257-261.
[22]Yamaguchi S., T. Shimomura, “Adsorption, Immobilization, and Hybridization of DNA Studied by the Use of Quartz Crystal Oscillators.” Anal. Chem. 1993, 65, 1925-1927.
[23]Su H., K. M. R. Kallury, M. Thompson, “Interfacial Nucleic Acid Hybridization Studied by Random Primer 32P Labeling and Liquid-Phase Acoustic Network Analysis.” 1994, 66, 769-777.
[24]Muratsugu M., S. Kurosawa, N. Kamo, “Detection of Antistreptolysino Antibody:Application of an Initial Rate Method of Latex Piezoelectric Immunoassay.” Anal. Chem. 1992, 64, 2483-2487.
[25]Redepenning J., T. K. Schlesinger, E. J. Mechalke, D. A. Puleo, R. Bizioc, “Osteoblast Attachment Monitored with a Quartz Crystal Microbalance.” Anal. Chem. 1993, 65, 3387-3381.
[26]Konig B., M. Gratzel, “Long-Term Stability and Improved Reusability of a Piezoelectric Immunosensor for Human Erythrocytes.” Anal. Chim. Acta. 1993, 280, 37-41.
[27]Guibault G. G., “A piezoelectric immunobiosensor for atrazine in drinking water.” Biosens Bioelectron 1992, 7, 411-419.
[28]White F. M., “Viscous Fluid Flow.” McGraw-Hill, New York 1974.
[29]Bruckenstein S., M. Shay, “Experimental Aspects of Using Quartz Crystal Microbalance in Solution.” Electrochim. Acta. 1985, 30, 1295-1300.
[30]Kanazawa K. K., J. G. Gordon, “Frequency of a Quartz Microbalance in Contact with Liquid.” Anal. Chem. 1985, 57, 1770-1771.
[31]Hengerer A., J. Decker, E. Prohaska, S. Hauck, C. Ko¨ßlinger, H. Wolf, “Quartz crystal microbalance (QCM) as a device for the screening of phage libraries.” Biosens. Bioelectron. 1999,14, 139 –144.
[32]Israelachvili J. N., “Intermolecular and Surface Force.” Academic Press(Lodon) 1992.
[33]Bangham D., M. M. Standish and J. C. Watkins, “Diffusion of Univalent Ions across the Lamellae of Swollen Phosopholipids.” J. Mol. Biol. 1965, 13, 238-252.
[34]Lasic D. D., “Liposomes:from Physics to Applications.” Elsevier Science Publishers B. V., Amsterdam, 1993.
[35]New E. R. C., “Liposomes:a Practical Approach.” Oxford University Press, New York, 1990.
[36]Matsumura H., K. Watanabe, K. Furusawa, “Flocculation Behavior of Egg Phosphatidylcholine Liposomes Caused by Ca2+ Ion.” Colloid Surface A 1995, 98, 175-184.
[37]Carrion F. J., A. D. Maza, J. L. Parra, “The Influence of Ionic Strength and Lipid Bilayer Charge on Stability of Liposomes.” J. Colloid Interf. Sci. 1994, 164, 78-87.
[38]Lev D., A. Gulik, M. Seigneuret, J. L. Rigaud, “Phospholipid Vesicle Solubilization and Reconstitution by Detergents Symmetrical Analysis of the Two Processes Using Octaethylene Glycol Mono–n–dodecyl Ether.” Biochemistry 1990, 29, 9480-9488.
[39]Minami H., T. Inoue, R. Shimozawa, “Berylium Ion can Induce the Aggregation of Phosphatidylcholine Vesicles.” Langmuir 1996, 12, 3574-3579.
[40]Taylor K. M. G., R. M. Morris, “Thermal Analysis of Phase Transition Behaviour in Liposomes.” Thermochimica Acta 1995, 248, 289-301.
[41]Chen Z., R. P. Rand, “The Influence of Cholesterol on Phospholipid Membrane Curvature and Bending Elasticity.” Biophys. J. 1997, 73, 267-276.
[42]Grit M., D. J. A. Crommelin, “Chemical Stability of Liposomes:Implications for their Physical Stability.” Chem. Phys. Lipids 1993, 64, 3-18.
[43]Grit M., W. J. M. Underberg, D. J. A. Crommelin, “ Hydrolysis of Saturated Soybean Phosphatidylcholine in Aqueous Liposome Dispersions.” J. Pharm. Sci. 1995, 82, 362-366.
[44]Derossi D., S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing, A. Prochiantz, “Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent.” J. Biol. Chem. 1996, 271(30): 18188–18193.
[45]Pouny Y., D. Rapaport, A. Mor, P. Nicolas, Y. Shai, “Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes.” Biochemistry 1992, 31(49): 12416–12423.
[46]Matsuzaki K., K. Sugishita, K. Miyajima, “Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide- containing liposomes as a model for outer membranes of gram-negative bacteria.” FEBS Lett. 1999, 449(2–3): 221–224.
[47]Gazit E., W. J. Lee, P. T. Brey, Y. Shai, “Mode of action of the antibacterial cecropin B2: a spectrofluorometric study.” Biochemistry 1994, 33(35): 10681–10692.
[48]Elmquist A., “Cell-penetrating peptides: cellular uptake and biological activities.” 2003
[49]Park C. B., H. S. Kim, S. C. Kim, “Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions.” Biochem. Biophys. Res. Commun. 1998, 244(1): 253–257.
[50]Haberman E., “Bee and wasp venoms.” Science 1972, 177, 314-322.
[51]Schwarz G., G. Beschiaschvili, “Thermodynamic and kinetic studies on the association of milittin with a phospholipid bilayer.” Biochim. Biophys. Acta. 1989, 979, 82-90.
[52]Terwilliger T. C., D. Eisenberg, “The structure of melittin .Ⅱ. Interaction of the structure.” J.Biol. Chem. 1982, 257, 6016-6022.
[53]Brown L. R., W. Braun, A. Kumar, K. Wutherich, “ High resolution nuclear magnetic resonance studies of the conformation and orientation of melittin bound to a lipid-water interface.” Biophys. J. 1982, 37, 319-328.
[54]Drake J. C., R. C. Hider, “The structure of melittin in lipid bilayer membranes.” Biochim. Biophys. Acta. 1979, 555, 371-373.
[55]Talbot J. C., J. Dufourcq, J. DeBony, J. F. Faucon, C. Lussan, “Conformational change and self-association of monomer melittin.” FEBS 1979, 102, 191-193.
[56]Quay S. C., C. C. Condie, “Conformational studies of aqueous melittin: thermodynamic parameters of the monomer-tetramer self-association reaction.” Biochemistry 1983, 22, 695-700.
[57]Vogel H., F. Jahnig, “The structure of melittin in membranes.” Biophys. J. 1986, 50, 573-582.
[58]Terwilliger T. C., L. Weissman, D. Eisenberg, “The structure of melittin in the formⅠcrystals and its implication for melittin’s lytic and surface activities.” Biophys. J. 1982, 37:353-361.
[59]Terwilliger T. C., D. Eisenberg, “The structure of melittin.Ⅰ. Structure determination and partial refinement.” J. Biol. Chem. 1982, 257, 6010-6015.
[60]Dempsey C. E., “The actions of melittin on membranes.” Biochim. Biophys. Acta. 1990, 1031:143-161.
[61]Lauterwein J., L. R. Brown, K. Wutherich, “High resolution 1H-NMR studies of self-aggregation of melittin in aqueous solution.” Biophys. Acta. 1980, 622:231-244.
[62]Dawson C. R., A. F. Drake, J. Helliwell, R. C. Hider, “The interaction of bee melittin with lipid bilayer membranes.” Biochim. Biophys. Acta. 1978, 510, 75-86.
[63]Knoppel E., D. Eisenberg, W. Wickner,”Interaction of melittin, a perprotein model, with detergents.” Biochemistry 1979, 18, 4177-4181.
[64]Vogel H., “Comparsion of the conformation and orientation of alamethicin and melittin in lipid membranes.” Biochemistry 1987, 26, 4562-4572.
[65]Frey S., L. K. Tamm, “Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study.” Biophys. J. 1981, 103, 679-681.
[66]Sessa G., J. H. Freer, G. Colacicco, G. Weismann, “Interaction of a lytic peptide, melittin, with lipid membrane systems.” J. Biol Chem. 1969, 244, 3575-3582.
[67]Rex S., “Pore formation induced by the peptide melittin in different lipid vesicle membranes.” Biophys. Chem. 1996, 58, 75-85.
[68]Laine R. O., B. P. Morgan, A. F. Esser, “Comparison between complement and melittin hemolysis:Anti-melittin antibodies inhibit complement lysis.” Biochemistry 1988, 27, 5308-5314.
[69]Tosteson M. T., Tosteson D. C., “The sting:Melittin forms channels in lipid bilayers.” Biophys. J. 1981, 36, 109-116.
[70]Batenberg T., M. Lafleur, “Study of vesicle leakage induced by melittin.” Biochim. Biophys. Acta. 1995, 1235, 452-460.
[71]Pawlak M., U. Meseth, B. Dhanapal, M. Mutter, H. Vogel, “Template-assembled melittin:Structural and functional characterization of a designed, synthetic channel-forming protein.” Protein Sci. 1994, 3,1788-1805.
[72]Gravitt K. R., N. E. Ward, C. A. O’Brian, “Inhibition of protein kinase C by melittin:antagonism pf binding interactions between melittin and the catalytic domain by action-site binding of Mg ATP.” Biochem. Pharmacol. 1994, 47, 425-427.
[73]Kajita S., H. Iizuka, “Melittin-induced alteration of epidermal adenylate cyclase responses.” Acta. Derm. Venereol. 1987, 67, 295-300.
[74]Hasse I., B. M. Czarnetzki, T. Rosenbach, “Thrombin and melittin activate phospholipase C in human HaCaT keratinocytes.” Exp. Dermatol. 1996, 5, 84-88.
[75]Saini S. S., A. K. Chopra, J. W. Peterson, “Melittin activates endogenous phospholipase D during cyctolysis of human monocytic leukemia cells.” Toxicon 1999, 37, 1605-1619.
[76]何怡瑱,“三團聯聚合物(PF-127)和磷脂質間交互作用力量測和磷脂質微脂粒穩定度之探討”,國立中央大學/化學工程研究所/89年度/碩士論文。[77]楊淑萍,“三團聯共聚物及鎂離子對微脂粒物理穩定性之影響及其機制探討”,國立中央大學/化學工程研究所/88年度/碩士論文。[78]Lahiri J, P. Kalal, A. G. Frutos, S. J. Jonas, and R. Schaeffler, “Method for Fabricating Supported Bilayer Lipid Membranes on Gold.” Langmuir 2000, 16, 7805-7810.
[79]Reimhult E., F. Ho¨o¨k, and B. Kasemo, “Intact Vesicle Adsorption and Supported Biomembrane Formation from Vesicles in Solution: Influence of Surface Chemistry, Vesicle Size.” Temperature, and Osmotic Pressure.” Langmuir 2003, 19, 1681-1691.
[80]Dufourc E. J., E. J. Parish, S. Chitrakorn, I. C. P. Smith, “Structural and dynamical details of cholesterol-lipid interactions as revealed by deuterium NMR.” Biochemistry 1984, 23:6062–6071
[81]Stockton G. W., I. C. P. Smith, “A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. Ι. Perdeuterated fatty acid probes.” Chem. Phys. Lipids 1976, 17:251–263
[82]Bereza U. L., G. J. Brewer, G. M. Hill, “Effect of dietary cholesterol on erythrocyte peroxidant stress in vitro and in vivo.” Biochim. Biophys. Acta 1985, 835, 434–440.
[83]Clemens M. R. and H. D. Waller, “Lipid peroxidation in erythrocytes.” Chem. Phys. Lipids 1987, 45, 251–268.
[84]Parasassi T., A. M. Giusti, M. Raimondi, G. Ravagnan, O. Sapora, E. Gratton, “Cholesterol protects the phospholipid bilayer from oxidative damage.” Free Radic. Biol. Med. 1995b, 19, 511–516.
[85]Samuni A. M., A. Lipman, Y. Barenholz, ”Damage to liposomal lipids: protection by antioxidants and cholesterol-mediated dehydration.” Chem. Phys. Lipids 2000, 105, 121–134.
[86]Ladokhin A. S., M. E. Seleted, S. H. White, “Sizing membrane pores in lipid vesicles by leakage of co-encapsulated makers : pore formation by melittin.” Biophys. J. 1997, 72, 1762–1766.
[87]Benachir T., M. Monette, J. Grenier, M. Lafleur, “Melittin-induced leakage from phosphatidylcholine vesicles is modulated by cholesterol: a property used for membrane targeting.” Eur. Biophys. J. 1997, 25, 201-210.
[88]林瑞益,“利用胺基酸/胜肽/蛋白質及其與脂質雙層結合之熱力學性質探討經皮輸藥系統之研究”,國立中央大學/化學工程研究所/86年度/博士論文。
[89]Ladokhin A. S., and S. H. White, “Folding of amphipathic α-helices on membranes: energetics of helix formation by melittin.” J. Mol. Biol. 1999, Volume 285, 1363-1369.
[90]Drake A. F. and R. C. Hider, “The structure of melittin in lipid bilayermembranes.” Biochim. Biophys. Acta. 1979, 555:371–373.
[91]Lauterwein J., C. Bösch, L. R. Brown, K. Wüthrich, “Physicochemical studies of the protein-lipid interactions in melittin-containing micelles.” Biochim. Biophys. Acta. 1979, 556:244–264.
[92]Lavialle F., R. G. Adams, I. W. Levin, “Infrared spectroscopic studyof the secondary structure of melittin in water, 2-chloroethanol,and phospholipid bilayer dispersions.” Biochemistry 1982, 21:2305–2312.
[93]劉得任,“微卡計於液膜交互作用力量測之應用--微脂粒系統穩定度之探討”,國立中央大學/化學工程研究所/88年度/博士論文。[94]蔡莉敏,“聚氧乙烯山梨醣甘型界面活性劑對微脂粒物理穩定性及包覆物質穿透”, 國立中央大學/化學工程研究所/87年度/碩士論文。[95]Allende D. and T. J. McIntosh, “Lipopolysaccharides in Bacterial Membranes Act like Cholesterol in Eukaryotic Plasma Membranes in Providing Protection against Melittin-Induced Bilayer Lysis.” Biochemistry 2003, 42, 1101-1108.
[96]Papo N. and Y. Shai, “Exploring Peptide Membrane Interaction Using Surface Plasmon Resonance : Differentiation between Pore Formation versus Membrane Disruption by Lytic Peptides.” Biochemistry 2003, 42, 458-466.
[97]Lundberg P. and l. Langel, “Review A brief introduction to cell-penetrating peptides.” J. Mol. Recognit. 2003, 16: 227–233.
[98]Zasloff M., “Antimicrobial peptides of multicellular organisms.” Nature 2002, 415, 389-395.
[99]McIntosh T. J., A. D. Magid, S. A. Simon, “Cholesterol Modifies the Short-Range Repulsive Interactions between Phosphatidylcholine Membranes. ” Biochemistry 1989, 28, 17-25.