跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 14:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭綉娟
研究生(外文):Hsiu-Chuan Kao
論文名稱:定水頭部分貫穿汲水推估非受壓含水層水文參數之方法
論文名稱(外文):Parameter Estimation of Constant Head Test in the Unconfined Aquifer with Partially Penetrating Effect
指導教授:陳家洵陳家洵引用關係
指導教授(外文):Chia-Shyun Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球物理研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:93
中文關鍵詞:定水頭抽水試驗部分貫穿效應異質性非受壓含水層水文地質調查參數推估
外文關鍵詞:unconfined aquiferheterogenouspartially penetrating effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
許多污染場址位於低滲透性未受壓含水層中,必須使用定水頭試驗進行參數推估以瞭解水文地質狀況;然而,參數推估需要使用合適的水井水力學理論才能避免錯誤的解釋。我們用三種方法分析美國Iowa冰磧土定水頭洩降資料,證實資料分析疏於試驗場址真實狀況會造成含水層異質性的假象。冰磧土含水層的厚度約2.5公尺厚,抽水試驗用井皆為全程貫穿井且井篩開口至整個含水層,由於抽水井維持固定1.5公尺的固定水位,造成1.5公尺的井篩段為不進水情況,形成部分貫穿井的特徵。觀測井與抽水井的距離分別為0.87、1.80、2.71與3.62公尺,其最大洩降變化分別為含水層厚度的15.43%、11.12%、10.96%與5.62%,也有部分貫穿井特徵存在。方法一將各井忽略部分貫穿效應,而假設為全程貫穿井來進行推估,參數推估結果有流通係數(Transmissivity, T)與視儲水係數(Apparent Storage, Sa)隨觀測井距離越遠其值越大之趨勢;方法二則考慮了抽水井因為人為汲水造成井中洩降已占含水層60%的厚度,全程貫穿井必須視作部分貫穿井來考慮,參數推估結果隨距離之趨勢變化減少許多;方法三將觀測井加入部分貫穿效應,由各別觀測井推估出接近一組的水文地質參數組:垂直水力導數(horizontal hydraulic conductivity, Kz)、水平水力導數(vertical hydraulic conductivity, Kr)、儲蓄係數(specific storage, Ss)與比出水量(specific yield, Sy)。以距離抽水井不到4公尺的觀測井中推估出接近的參數組是合理且可以接受的。為了證明此參數組是合理的,我們使用複合式洩降方法(Composite Drawdown Method)來佐證此組參數,我們得到正面的結果。此外,在同一含水層中,執行不同的抽水試驗並不會改變當地的水文地質參數,我們用Jones et al.在同一場址所執行定流率試驗洩降資料來驗證此參數組的正確性,然而,定流率抽水井有水位落於井篩段位置之現象,我們嘗試用數值方法來解決此問題,得到不錯的參數驗證結果。
Transmissivity (T) values estimated using pumping test data normally vary with distance, suggesting the aquifer be heterogenous. However, we found that this result may be not so much due to the spatial variability of T as due to the data analysis method failing to account for field test conditions. Here, we use three different methods to analyze drawdown data produced from a constant-head pumping test in an unconfined till aquifer in Iowa. The saturated till thickness is about 2.5 meter. The water depth (the constant head) maintained in the pumping well was only 1.5 meter. There were four observation wells, and their maximum drawdown changes from 5.62% to 15.43% of the saturated thickness. Method I ignores the possible partial penetrating effect in the wells by assuming a fully penetrating condition for all the wells. The estimates of T vary relatively randomly, lacking a sound explanation. Method II assumes that the pumping well is partially penetrating while the observation wells are fully penetrating, and the spatial variability of the T estimates decreases. Method III takes into account the partial penetrating effect of the wells, and a constant T value is obtained using the drawdown data of all the observation wells. This constant T is also used to analyze drawdown data from a constant-rate test conducted in the same aquifer and the same wells. Considering the five observation wells are located within a short extent of 5 meters surrounding the pumping well, the T value being constant is plausible. For this particular case, it is thus concluded that the spatial variability of the estimates of T is an artifact due to the negligence of the partial penetrating effects of the pumping well and the observation wells. For the constant head data analysis, we develop a mathematical model which is suitable for the unconfined aquifer and involves four pertinent parameters; namely, the horizontal and the vertical hydraulic conductivity, the storage coefficient, and the specific yield.
符號說明1
第一章 前言4
1.1研究目的8
第二章 理論模式推導11
2.1.1模式假設與邊界條件11
2.1.2模式的拉普拉斯區域解15
2.1.3滿足混合邊界條件18
2.1.4觀測井考慮部分貫穿效應20
2.2 Moench (1997)觀測井洩降之大時間近似解23
第三章 理論模式分析29
3.1數值驗證29
3.1.1模式驗證一:部分貫穿汲水29
3.1.2模式驗證二:非受壓含水層邊界條件31
3.2非受壓含水層定水頭部分貫穿汲水理論曲線分析34
3.3井流通量分析37
3.5觀測井考慮部分貫穿效應之理論曲線分析44
第四章 試驗場址背景45
4.1地質背景45
4.2井場背景介紹48
4.3抽水試驗洩降資料50
第五章 資料分析與參數推估58
5.1分析流程59
5.1.1大時間洩降修正59
5.1.2方法一:忽略部分貫穿效應59
5.1.3方法二:考慮抽水井部分貫穿效應61
5.1.4方法三:考慮觀測井部分貫穿效應67
5.2.1定水頭抽水試驗複合式參數推估方法之驗證69
5.2.2定流率抽水試驗參數推估之驗證72
5.2.3用數值方法解決水位落入井篩段之問題75
5.3參數推估討論78
5.4參數推估結論81
第六章 結論84
附錄一89
附錄二 定水頭儀器設備92
參考文獻
Abramowitz, M., and I.A. Stegun, 1972, Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1046
Boulton, N. S., 1955, Unsteady radial flow to a pumped well allowing for delayed yield from storage, in Gen. Assem. Rome, Tome II, Int. Assoc. Sci. Hydrol. Publ., 37, 472-477
Boulton, N. S., 1963, Analysis of data from non-equilibrium pumping tests allowing for delayed yield from storage, Proc. Inst. Civ. Eng., 26, 496-482
Bonnet, M., J. Forkasiewicz, and P. Peaudecerf, 1970, Methods d’inter-pretation de pompages d’essai en-nappe libre, Bur. Rech. Geol. Min. Rep. 70 SGN 359 HYD, Orleans, France.
Chen, C. S., mad C. C. Chang, 2003, Well hydraulics theory and data analysis for the constant head test in an unconfined aquifer with skin effect, Water Resour. Res., 39(5), 1121, doi: 10.1029/2002WR001516
Chen, C. S., and C. C. Chang, 2002, Use of cumulative volume of constant-head injection test to estimate aquifer parameters with skin effects: field experiment and data analysis, Water Resour. Res., 38(5), 10.1029/2001WR000300
Chang, C. C., and C. S. Chen, 2003, A flowing partially penetrating well in a finite-thickness aquifer: A mixed-type initial boundary value problem, J. Hydrol., 271/1-4, 101-118
Chang, C. C., and C. S. Chen,2002a, Field experiment and data analysis of a Constant-Head Injection Test with Skin Effects in a Low-Transmissivity Aquifer, TAO, 13(1), 15-38
Chang, C. C., and C. S. Chen, 2002b, An integral transform approach for a mixed boundary problem involving a flowing partially penetrating well with infinitesimal well skin, Water Resour. Res., 38(6), 10.1029/2001 WR001091
Cooper, H. H. and C. E. Jacob, 1946, A generalized graphical method for evaluating formation constants and summarizing well field history, Trans. Am. Geophys. Union 27 526-534
Domenico, P. A. and G. A. Robbins, 1984, A dispersion scale effect in model calibrations and field tracer experiments. J. Hydrol., 70, 123-132
Edwards, K. B., and L. C. Jones, 1993, Modeling pumping tests in weathered glacial till, J. Hydrol., 150(1), 41-60
Goode, D. J., 1997, Composite recovery type curves in normalized time from Theis’ exact solution. Ground Water, 35(4) 672-678
Jones, L., T. Lemar, and C.-T. Tsai, 1992, Results of two pumping tests in Wisconsin age weathered till in Iowa, Ground Water, 30(4), 529-538
Jones, L.,1993, A comparison of pumping and slug tests for estimating the hydraulic conductivity of unweathered Wisconsin age till in Iowa, Ground Water, 31(6), 896-904
Jacob, C. E., 1963, Determining the permeability of water table aquifers, U. S.Geol. Survey Water Supply Paper 1536-1,245-271
Moench, A. F., 1994, specific yield as determined by type-curve analysis of aquifer-test data. Ground Water, 32(6) 949-957
Moench, A. F., 1997, Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer, Water Resour. Res., 33(6), 1397-1407
Moench, A. F., 1995, Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer, Ground Water, 33(3), 378-384
Moench A. F., P. G. Stephen and R. L. Denis, 2001, Estimation of Hydraulic Parameters from an Unconfined Aquifer Test Conducted in a Glacial Outwash Deposit, Cape Cod, Massachusetts. U. S. Geological Survey Professional Paper 1629.
Neuman, S. P., 1972, Theory of flow in unconfined aquifers considering delayed response of the water table, Water Resour. Res., 8(4), 1031-1044
Neuman, S. P., 1974, Effects of partial penetration on flow in unconfined aquifers considering delayed aquifer response, Water Resour. Res., 10(2), 303-312
Neuman, S. P., 1975, Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response, Water Resour. Res., 11(2), 329-342
Rice, J. B., 1998, Constant drawdown aquifer tests: an alternative to traditional constant rate tests, Ground Water Monit. R., 18(2), 76-78
Stehfest, H., 1970, Numerical inversion of Laplace transforms. Commun. ACM 13, 47-49
Stallman, R. W., 1971, Aquifer-test Design, Observation, and Data analysis, U.S. Geological Survey, Techniques of Water-Resources Investigations. Book 3, Chapter B1
Sneddon, I. N., 1972, The Use of Integral Transforms, McGraw-Hill, Inc., New York, 540
Theis, C. V., 1935, The relationship between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Eos Trans. AGU, 2, 519-524
van der Kamp, G., 2001, Methods for determining the in site hydraulic conductivity of shallow aquitards–an overview, Hydrogeology Journal, 9, 5-16
van der Kamp, G., 1985, Brief quantitative guidelines for the design and analysis of pumping tests. Hydrogeology in the Service of Man, Memoir of the 18th Congress of the International Assoc. of Hydrogeologists, Cambridge. Part 4, 197-206
Walton, W. C., 1970, Groundwater Resource Evaluation. McGraw-Hill, Inc., New York. 644.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top