跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝文祺
研究生(外文):Wen-Chi Hsieh
論文名稱:台灣中部二維密度構造之探討
論文名稱(外文):Two-dimensional density structure across central Taiwan
指導教授:顏宏元顏宏元引用關係
指導教授(外文):Horng-Yuan Yen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球物理研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:70
中文關鍵詞:重力密度構造
外文關鍵詞:gravitydensity structure
相關次數:
  • 被引用被引用:10
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了了解台灣中部的地下構造,本研究配合日本東京大學地震研究所於台灣中部所設置的東西向線形地震網,於該區進行實地的重力測勘,希望藉由地震資料與重力資料的結合,獲得較可靠的地下構造。這些實測的重力資料經過各項的重力修正步驟,獲得了該測線的布蓋異常值起伏。
模擬過程中,首先假設岩層密度與震波速度間為一簡單的關係,將速度構造轉換為密度構造後,再計算該構造所對應的理論布蓋異常值,並與實測布蓋異常值做比對。很可惜的,日本方面利用地震資料所推求之地下構造,與實測布蓋異常值間有不小的差異,僅台灣西部有較好的結果。
本研究亦嘗試對數個其他的二維速度構造進行布蓋異常值的計算,並同時考慮另外兩個不同位置的剖面一併做比較。大致上來看,台灣西半部的地下岩層所受擾動較小,構造模式較單純;台灣東半部則因板塊碰撞的影響,造成較複雜的地下構造。
根據模擬的結果,莫荷不連續面的最深處出現在中央山脈下方,該處的上部地殼也有明顯的增厚現象,應為菲律賓海板塊向西擠壓造成地殼變形的結果。過了中央山脈以東,大陸性地殼轉變為海洋性地殼,造成了莫荷不連續面的變淺。在花蓮北部的剖面中,由於板塊間形態的轉變,造成上部地殼嚴重的撓曲,並於深部產生了一低密度區域。
本研究結果顯示,速度構造對於深部的控制較佳。因此,若能利用速度構造控制深部的構造形貌,配合重力資料與地表地質控制淺部構造,應可獲得較可靠之地下構造。
A more reliable subsurface structure can be obtained by combining both of the seismic and gravity data. To gain a better understanding in the central Taiwan, the seismic and gravity data were collected in summer, 2000. The seismic profile approximately perpendicular to the geological strike of Taiwan, were deployed 60 seismic instruments with an average spacing of 2 km. In the mean time, gravity survey was also made along this seismic profile to obtain the Bouguer anomaly distribution. In the modeling of subsurface density structure, available seismic data are used wherever possible to constrain the geometric and/or densities. We simply assumed that there is a direct relationship between density and velocity without any further consideration. Unfortunately, the calculated Bouguer anomaly from the velocity structure doesn’t match well with the observed Bouguer anomaly except the western segment. We also try to calculate Bouguer anomaly from other 2-D velocity structures taken from the previous 3-D velocity models. To study the compatibility between the density and velocity structures should be as a more important research topic in Taiwan. Finally, the reliable density structure across central Taiwan is obtained from the gravity data. In substance, the structure is simply in the western segment but complex in the eastern segment. According to the simulated result, the crustal deformation due to the collision between Eurasia Plate and Philippine Sea Plate caused the result that the depth of the upper crust obviously increases and the deepest position of the Moho discontinuity appears below the Central Range. Across the eastern Central Range, the crustal type transfers from the continental crust to the oceanic crust so that the Moho discontinuity becomes shallow. In the profile near Hualien, with the transition of plates, there are a heavy deformation at the upper crust and a lower density region in the depths. The results show that the velocity structure obtained by seismic investigation had a good constrain in depth. Therefore, we can obtain a more reliable subsurface structure by using the velocity structure to control the deep conformation and using the gravity and geological data to control the shallow conformation.
第一章 緒論 1
1.1 研究動機與目的 1
1.2 前人研究 4
1.2.1 重力研究 4
1.2.2 速度構造 4

第二章 研究區概述與資料來源 14
2.1 研究區位置概述 14
2.1.1 重力測線位置 14
2.1.2 速度剖面位置 14
2.2 研究區地形與地質概述 14
2.3 板塊構造 17
2.4 重力資料來源 19
2.4.1 重力資料蒐集 19
2.4.2 野外重力觀測 19

第三章 重力資料處理與重力異常 23
3.1 重力修正 23
3.1.1 緯度修正(Latitude Correction) 23
3.1.2 自由空間修正(Free-air Correction) 24
3.1.3 布蓋修正(Bouguer Correction) 24
3.1.4 地形修正(Terrain Correction) 25
3.2 重力異常 27
3.2.1 自由空間異常(Free-air Anomaly) 27
3.2.2 布蓋異常(Bouguer Anomaly) 28
3.3 地下構造推演 28
3.4 重力資料處理流程 31
3.5 自由空間異常分布 31
3.6 布蓋異常分布 34

第四章 地下構造模擬 36
4.1 速度與密度的轉換 36
4.2 速度構造處理流程 37
4.3 程式測試 37
4.3.1 基本測試 37
4.3.2 海水影響 40
4.4 初步地下構造 43
4.4.1 A-A’剖面 43
4.4.2 B-B’剖面 44
4.4.3 C-C’剖面 44
4.5 模擬結果 45

第五章 結論 56

參考文獻 58
附錄 B-B’重力測線之重力測點資料 61
英文摘要 69
Barton P. J., 1986. The relationship between seismic velocity and density in the continental crust - a useful constraint? Geophys. J. R. astr. Soc., 87, 195-208.
Bullard E. C., 1936. Gravity measurements in East Africa, Philos. trans. R. Soc. Lond., Ser. A, 235, 445-531.
Dehlinger P., 1978. Marine gravity, Elsevier Scientific Pub. Co., Netherlands, 137.
Hagiwara Y., 1967. Analysis of gravity values in Japan, Bull. Earthqu. Res. Inst., Univ. Tokyo, 45, 1091-1228.
Hammer S., 1939. Terrain corrections for gravity stations, Geophysics, 4, 184-194.
Hammer S., 1982. Critique of terrain corrections for gravity stations, Geophysics, 47, 839-840.
Howell B. F., 1971. Introduction to geophysics, 214.
Jeffreys H., 1962. The earth, 4th ed., Cambridge.
Kim K. H., 2003. Subsurface structure, seismicity patterns, and their implications to tectonic evolution in Taiwan, Ph.D. thesis, The University of Memphis, 159 pp.
Ma K. F., J. H. Wang, and D. Zhao, 1996. Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan, J. Phys. Earth, 44, 85-105.
Morelli C., 1976. Modern standards for gravity surveys, Geophysics, 41, 1051.
Nafe J. E. and C. L. Drake, 1957. Variation with depth in shallow and deep water marine sediments of porosity, density and the velocities of compressional and shear waves, Geophysics, 22, 523-552.
Nettleton L. L., 1976. Gravity and magnetics in oil prospecting, McGraw-Hill, New York, N. Y.
Rau R. J. and F. T. Wu, 1995. Tomographic imaging of lithospheric structures under Taiwan, Earth Planet. Sci. Lett., 133, 517-532.
Shih R. C., C. H. Lin, H. L. Lai, Y. H. Yeh, B. S. Huang, and H. Y. Yen, 1998. Preliminary crustal structures across central Taiwan from modeling of the onshore-offshore wide-angle seismic data, TAO, 9, 317-328.
Talwani M., 1973. Computer usage in the computation of gravity anomalies, Methods in computational physics, 13, B. Bolt(ed.), Academic Press, New York, 344-389.
Talwani M., J. L. Worzel, and M. Landisman, 1959. Rapid gravity computations for two-dimensional bodies with application to the Mendocino Submarine Feacture Zone, J. Geophys. Res., 64, 49-59.
Turcotte D. L. and G. Schubert, 1983. Geodynamics, 206.
Verma R. K., 1985. Gravity field, seismicity and tectonics of the Indian Peninsula and the Himalayas, D. Reidel Pub., Dordrecht, Holland.
Wang T. K. and C. H. Chiang, 1998. Imaging of arc-arc collision in the Ryukyu forearc region offshore Hualien from TAICRUST OBS Line 16, TAO, 9, 329-334.
Yeh Y. H., Y. B. Tsai, and M. C. Wang, 1982. A study of tidal variation of gravity in northern Taiwan, Bull. Inst. Earth Sci., Academia Sinica, 2, 75-90.
Yeh Y. H., R. C. Shih, C. H. Lin, C. C. Liu, H. Y. Yen, B. S. Huang, C. S. Liu, P. Z. Chen, C. S. Huang, C. J. Wu, and F. T. Wu, 1998. Onshore/offshore wide-angle deep seismic profiling in Taiwan, TAO, 9, 301-316.
Yen H. Y., Y. H. Yeh, and C. H. Lin, 1986. Repeat measurement of gravity in Taiwan: anomalous gravity related with the May 20, 1986 Hualien earthquake, Bull. Earth Sci., Academia Sinica, 6, 65-72.
Yen H. Y., Y. H. Yeh, C. H. Lin, K. J. Chen, and Y. B. Tsai, 1995. Gravity survey of Taiwan, J. Phys. Earth, 43, 685-696.
Yen H. Y., Y. H. Yeh, and F. T. Wu, 1998. Two-dimensional crustal structures of Taiwan from gravity data, Tectonics, 17, 104-111.
本田史紀, 2004. Crustal and upper mantle structure beneath Taiwan collision zone using natural earthquakes observed by a dense linear array across the island, 日本東京大學地震研究所碩士論文, 74 pp.
何春蓀, 1997. 臺灣地質概論,經濟部中央地質調查所,二版三刷,共164頁。
顏宏元, 1991. 台灣地區重力異常分佈及其在地體構造上之含義,國立中央大學地球物理研究所博士論文,共98頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top