跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 23:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂玉菀
研究生(外文):Yu-Wan Lu
論文名稱:使用震源機制逆推台灣地區應力分區狀況
論文名稱(外文):Using Focal Mechanism to Invert the Stress Fields in the Taiwan Region
指導教授:李錫堤李錫堤引用關係馬國鳳馬國鳳引用關係
指導教授(外文):Chyi-Tyi LeeKuo-Fong Ma
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球物理研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:97
中文關鍵詞:應力分區應力震源機制台灣
外文關鍵詞:Taiwanfocal mechanismstress
相關次數:
  • 被引用被引用:6
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究收集台灣地區震源機制解資料,進行大地應力逆推計算,企求劃分合理的應力均質區及探討各均質區的應力狀況。
研究中蒐集品質較高的CMT法與波形逆推法所得的震源機制解為資料,分別利用Gephart逆推方法與Michael逆推方法求得各移動視窗的應力逆推結果,再依照各視窗所得結果進行均質區的圈劃,並加以適當的調整,以得到各個合理的應力均質區域。若兩種逆推方法所得差別較大,也使用Angelier逆推方法加以比較。
進行移動視窗逆推分析時,將資料分為規模大於3者及規模大於4者兩組,分別進行分析及劃分應力均質區。結果發現,使用兩種資料分類,皆可將研究區域劃分為9-10個分區。由於資料量的大小差異,導致分區的範圍略有不同,但兩種分類所得的分區結果卻相近。各個分區細節皆有不同,但是大部分區域之最大主應力方位,皆符合菲律賓海板塊向西北擠壓歐亞板塊的方向。台東縱谷東側可以被劃分為一個完整的應力均質分區,而台灣西半部的最大主應力軸方位,由南較成東西向,越往北有順時針向北偏轉的效果產生。在宜蘭分區,因沖繩海槽的影響,其最大主應力軸呈現東北—西南走向的正斷層或橫移斷層的機制。
The purpose of this study is to find out the stress condition in different
homogenous stress zones in the Taiwan region, by method of stress
inversion using focal mechanism data. Numerous focal mechanism data
have been collected from various literatures. The methodology of stress
inversion was the orientation of principal stress axes with the 95%
confidence regions estimated by the Gephart method and Michael method. If
there is a discrepancy between the results of the two methods, the Angelier
method was used for comparison.
Our study area includes the whole island and extends to 30 km offshore.
The range of hypocenter depth is 0 to 30 km. High quality focal mechanism
data obtained from the centroid moment tensor and waveform inversion
algorithm within this zone were collected .
Two dataset were retrieved from the focal mechanism database, group
one is those with magnitude greater than 3 and group two greater than 4 for
more consistent data. The Taiwan region was firstly divided into 9 or 10
homogenous zones by adopting a criteria of misfit less than 6 degrees in the
stress inversion scheme.
The results in each homogenous area show that great majority of
principle stress directions are consistent with the collision between the
Philippine Sea Plate and the Eurasian Plate for the whole study zone. The
eastern side of the Longitudinal Valley can be considered as a homogeneity
of stress field. On the other hand, in Western Taiwan, the direction of most
principal stress changes clockwise from E-W in the South to N in the North.
In I-Lan, near the Okinawa Trough, transtensional faulting mechanism and
more NE-WS maximum horizontal stress direction were found.
中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖目 Ⅵ
表目 Ⅷ

第一章 緒論 1
1.1 研究動機與目的 1
1.2 前人研究 1
1.2.1 應力逆推結果 1
1.2.2 資料合成 3

第二章 資料蒐集與處理 7
2.1 資料蒐集 7
2.2 資料處理 12

第三章 研究方法及流程 13
3.1 研究方法 13
3.1.1 應力逆推方法 13
3.1.2 可信度範圍 20
3.1.3 不同方法逆推結果比較 20
3.1.4 最大與最小水平應力的推求 21
3.2 研究流程 23

第四章 應力逆推結果 27
4.1 各網格應力狀況 27
4.1.1 使用全部資料 27
4.1.2 使用921地震為分界 31
4.2 大地應力分區結果 39
4.2.1 使用所有資料(規模大於3的地震事件) 39
4.2.2 規模大於4的地震事件 52

第五章 討論 58
5.1 各網格應力狀況與前人其他研究方法結果比較 58
5.2 各個應力均質分區所得逆推結果與前人研究比較 58
5.3 比較Gephart與Michael方法所得結果 59

第六章 結論與建議 61
6.1 結論 61
6.2 建議 62

參考文獻 63
附錄 70
江準熙(1994)應用震源機制估計區域構造應變與應力之研究,國立台灣大學海洋研究所碩士論文,共102頁。
吳相儀(2000)台灣地區中大型地震震源參數分析,國立中央大學地球物理研究所碩士論文,共119頁。
吳偉民(1994)一九九三年十二月十六日嘉義大埔地震序列之探討,國立中央大學地球物理研究所碩士論文,共73頁。
呂玉菀,李錫堤,馬國鳳(2004)使用震源機制逆推台灣地區應力分區狀況之初步研究,第十屆台灣地區地球物理學術研討會論文集, 85。
李錫堤(1986)大地應力分析與弧陸碰撞對於台灣北部古應力場變遷之影響,國立臺灣大學地質研究所博士論文,共202頁。
李錫堤,葉永田,鄭世楠,郭鎧紋,鍾仁光(1992)利用初達P波及S波之極性推求震源機制極區域應力狀況(I),交通部中央氣象局研究報告,439,186 - 203。
沈聖書(1996)由波形逆推地震震源機制解探討台灣東北外海隱沒與碰撞構造之特性,國立中央大學地球物理研究所碩士論文,共177頁。
倪偉峰(2003)集集地震前後車籠埔斷層下盤地區地震活動之研究,國立成功大學地球科學研究所碩士論文,共115頁。
陳榮裕(1995)一九九一年三月十二日佳里外海地震序列之探討,國立中央大學地球物理研究所碩士論文,共142頁。
鄭世楠(1995)臺灣及其鄰近地區大地應力分佈的研究,國立中央大學地球物理研究所博士論文,共215頁。
鄭錦桐(2002)台灣地區地震危害度的不確定性分析與參數拆解,國立中央大學地球物理研究所博士論文,共227頁。
簡珮如(1997)台灣區域地震之地震矩張量逆推法,國立中央大學地球物理研究所碩士論文,共149頁。
顏銀桐(2002)九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈,國立中央大學地球物理研究所碩士論文,共122頁。
Abers, G.A. and Gephart, J.W. (2001) Direct inversion of earthquake first motions for both the stress tensor and focal mechanisms and application to southern California, J. Geophys. Res., 106(11), 26523-26540
Angelier, J. (1979) Determination of the mean principal directions of stresses for a given fault population, Tectonophys., 56, 17-26
Angelier, J. (1984) Tectonic Analysis of Fault Slip Data Sets, J. Geophys. Res, 89, 5835-5848
Angelier, J. (1990) Inversion of field data in fault tectonics to obtain the regional stress-III. A new rapid direct inversion method by analytical mean, Geophys J. Int., 103, 363-376
Angelier, J. (2002) Inversion of earthquake focal mechanisms to obtain the seismotectonic stress IV- A new method free of choice among nodal planes, Geophys. J. Int., 150, 588–609
Efron, B. and Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Stat. Sci., 1(1), 54-77
Eva, E., Solarino, S., and. Eva, C (1997) Stress tensor orientation derived from fault plane solutions in the southwestern Alps, J. Geophys. Res., 102(4), 8171-8185
Gephart, J.W. (1990a) Stress and the direction of slip on fault planes, Tectonics, 9(4), 845-858
Gephart, J.W. (1990b) FMSI: A FORTRAN program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor, Comput. And Geosci., 16(7), 953-989
Gephart, J.W. and Forsyth, D.W. (1984). An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence, J. Geophys. Res., 89, 9305-9320
Gillard, D. and Wyss, M. (1992) A Seismotectonic model for western Hawaii based on stress tensor inversion from fault plane solutions, J. Geophys. Res., 97(5), 6629-6641
Gillard, D. and Wyss, M. (1995). Comparison of strain and stress tensor orientation: Application to Iran and southern California, J. Geophys. Res., 100(11), 22197-22213
Hardebeck, J.L. and Hauksson, E. (2001) Stress orientations obtained from earthquake focal mechanisms: What are appropriate uncertainty estimates? Bull. Seismol. Soc. Am., 91(2), 250–262
Horiuchi, S., Rocco, G., and Hasegawa, A. (1995) Discrimination of fault planes from auxiliary planes based on simultaneous determination of stress tensor and a large number of fault plane solutions, J. Geophys. Res., 100(5), 8327-8338
Hu, J.-C. and Yu, S.-B. (2001)Active deformation of Taiwan from GPS measurements and numerical simulations , J. Geophys. Res., 106(2), 2265-2280
Hu, J.-C., Angelier, J., Homberg, C., Lee, J.-C., Chu, H.-T. (2001) Three-dimensional modeling of the behavior of the oblique convergent boundary of southeast Taiwan: friction and strain partitioning, Tectonophys., 333, 261-276
Jost, M. L., Herrmann, R. B. (1989) A Student's guide to and review of moment tensors, Seism. Res. Lett., 60(2), 37-56
Kao, H. and Angelier, J. (2001) Stress tensor inversion for the Chi-Chi earthquake sequence and its implications on regional Collision, Bull. Seismol. Soc. Am., 91(5), 1028–1040
Kao, H. and Jian, P.-R. (1999), Source parameters of regional earthquakes in Taiwan: January- December, 1996, TAO, 10(3), 585-604
Kao, H., Liu, Y.-H. and Jian, P.-R. (2001) Source parameters of regional earthquakes in Taiwan: January- December, 1997, TAO, 12(2), 431-439
Kao, H., Liu, Y.-H., Chen, S.-C. and Liang W.-T. (2002a) Source parameters of regional earthquakes in Taiwan: January- December, 1998, TAO, 13(2), 197-204
Kao, H., Liu, Y.-H., Liang, W-T. and Chen, W.-P. (2002b)Source parameters of regional earthquakes in Taiwan: 1999-2000 including the Chi-Chi earthquake sequence, TAO, 13(3), 279-298
Kastrup, U., Zoback, M.L., Deichmann, N., Evans, K.F., Giardini, D., and Michael, A. J. (2004) Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions, J. Geophys. Res., 109, 1402-1424
Kiratzi, A.A. (2002) Stress tensor inversions along the westernmost North Anatolian Fault Zone and its continuation into the North Aegean Sea, Geophys. J. Int., 151, 360–376
Lee. C.-T. (1987) An improved method for estimation of tectonic stresses from earthquake fault plane solutions, Proc. Southeast Asian Geotechnical Conference, 7-67~7-80
Lee. C.-T. (1995) Reconstruction of complete stress tensor from earthquake fault plane solutions and a rational stress constrain model, International Symposium on Active collision in Taiwan and the 3rd Colloquium of Sino-French Cooperative Program in earth sciences, Taipei, 177-183.
Liang, B. and Wyss, M. (1991) Estimates of orientations of stress and strain tensors based on fault-plane solutions in the epicentral area of the great Hawaiian earthquake of 1868, Bull. Seismol. Soc. Am., 81(6), 2320-2334
Liang, W.-T., Liu, Y.-H., and Kao, H. (2003) Source parameters of regional earthquakes in Taiwan: January- December, 2001, TAO, 14(2), 249-260
Lu, Z. and Wyss, M. (1996) Segmentation of the Aleutian plate boundary derived from stress direction estimates based on fault plane solution, J. Geophys. Res., 101(1), 803-816
Lu, Z., Wyss, M. and Pulpan, H. (1997) Details of stress directions in the Alaska subduction zone from fault plane solutions, J. Geophys. Res., 102, 5385-5402
Lund, B. and Slunga, R., Stress tensor inversion using detailed microearthquake information and stability constraints: Application to Olfus in southwest Iceland, J. Geophys. Res., 104(7), 14947-14964
McKenzie, D.P.(1969) The relation between fault plane solutions for earthquakes and the directions of the principal stresses, Bull. Seismol. Soc. Am., 59(2), 591-601
Michael, A. J. (1984) Determination of Stress from slip data: faults and folds, J. Geophys. Res., 89, 11517-11526
Michael, A. J. (1987a) Use of focal mechanisms to determine stress: A control study, J. Geophys. Res., 92, 357-369
Michael, A. J. (1987b) Stress rotation during the Coalinga aftershock sequence, J. Geophys. Res., 92, 7963-7979
Parker, R.L. and McNutt, M.K. (1980) Statistics for the one-norm misfit measure, J. Geophys. Res., 85(8), 4429-4430
Prejean, S., Ellsworth, W., Zoback, M. and Waldhauser, F. (2002) Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions, J. Geophys. Res., 107(12), 2355-2374
Rau, R.-J. and Wu, F. T. (1998) Active tectonics of Taiwan orogeny from focal mechanisms of small-to-moderate-sized earthquakes, TAO, 9(4), 755-778
Rau, R.J., Wu, F.T. and Shin, T.C. (1996) Regional network focal mechanism determination using 3D velocity model and SH/P amplitude ratio, Bull. Seismol. Soc. Am., 86(5), 1270-12831
Sánchez, J.J., Wyss, M. and McNutt, S. R.(2004), Temporal-spatial variations of stress at Redoubt volcano, Alaska, inferred from inversion of fault plane solutions, J. Volcanol. Geotherm. Res., 130, 1-30
Sbar, M. L. (1982) Delineation and interpretation of seismotectonic domains in western North America, J. Geophys. Res., 87, 3919-3928
Wyss, M. and Lu, Z. (1995) Plate boundary segmentation by stress directions: southern San Andereas fault, California, Geophy. Res. Lett., 22(5), 547-550
Wyss, M., Liang, B., Tanigawa, W.R., and Wu, X. (1992) Comparison of orientation of stress and strain tensors based on fault plane solutions in Kaoiki, Hawaii, J. Geophys. Res., 97, 4769-4790
Yeh ,Y.-H., Barrier, E., Lin, C.-H. and Angelier, J. (1991)Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes, Tectonophys., 200, 267-280
Yu, S.B., Chen, H.Y. and Kuo, L.C. (1997) Velocity field of GPS stations in the Taiwan area, Tectonophys., 274, 41-59
Zoback, M. L. and Zoback, M. D. (1980) Faulting pattern in northern- central Nevada and strength of the Crust, J. Geophys. Res., 85, 275-284
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 25.邱瓊慧,「中小學資訊科技融入教學之實踐」,資訊與教育雜誌,88,頁3-9,2002年。
2. 鄭伯壎、莊仲仁 (1981),「基層軍事幹部有效領導行為之因素分析:領導績效、領導角色與領導行為之關係」,《中華心理學刊》,23卷2期:97-116。
3. 鄭伯壎 (1995),「家長權威與領導行為之關係:一個台灣民營企業主持人的個案研究」,《中央研究院民族學研究所集刊》。第79期,119-173。
4. 64.韓善民,「資訊教育基礎建設簡介」,資訊與教育雜誌,61,頁2-8,1997年。
5. 鄭伯壎 (1995),「差序格局與華人組織行為」,《本土心理學研究》,第3期,142-219。
6. 16.何榮桂,「台灣資訊教育的現況與發展-兼論資訊科技融入教學」,資訊與教育雜誌,87,頁22-48,2002年。
7. 60.鄧宜男,「教學系統設計模式之初探與改良」,中正嶺學術研究集刊,18,頁139-170,1999年。
8. 55.劉世雄,「國小教師運用資訊科技融入教學策略之探討」,資訊與教育,78,頁60-67,2000年。
9. 56.劉新白,「如何運用教學媒體提昇學習效果」,復興崗學報,51,頁287-314,1994年6月。
10. 51.溫明正,「E世代資訊變革對校園生態的影響」,資訊與教育,79,頁21-22,2000年。
11. 43.陳慧真,「教學媒體之研究」,竹北學粹,1,頁141-177,1993年12月。
12. 62.賴錦緣、吳正己、何榮桂,「新加坡資訊科技建設計畫」,資訊與教育雜誌,81,頁 93-104,2001年。
13. 34.張靜嚳,「傳統教學有何不妥」,建構與教學,第四期,1996年1月。2004年3月取自:http://scied.ncue.edu.tw/ct/v4-1.htm。
14. 30.張國恩,「從學習科技的發展看資訊融入教學的內涵」,北縣教育,41,頁16-49,2002年3月。
15. 29.張明文、王世英,「增進中小學資訊基本能力之方法初探--以桃園縣資訊護照為例」,技術及職業教育,59,頁41-45,2000年10月。