跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 00:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊仲準
研究生(外文):Chun-Chuen Yang
論文名稱:鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究
論文名稱(外文):Interplay among the structural, transport, and magnetic behaviors in Pr-based and Bi-based CMR material.
指導教授:李文獻李文獻引用關係
指導教授(外文):Wen-Hsien Li
學位類別:博士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:167
中文關鍵詞:磁有序磁結構電荷有序龐磁阻中子繞射
外文關鍵詞:CMRNeutron ScatteringMagnetic orderingMagnetic structureCharge ordering
相關次數:
  • 被引用被引用:6
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
Pr0.65Ca0.25Sr0.1MnO3的晶體結構已透過中子與X光繞射實驗分析。在室溫下PCSMO屬於斜方晶系的Pbnm空間群,並且發現在200 K附近發生了楊-泰勒扭曲。在高解析度中子繞射譜圖、比熱、磁化率、與電阻率實驗均發現在190 K時,系統進入的電荷有序態。在此一溫區外加超過2 T的磁場後,系統會進入電荷去局域化態。可能的原因為磁致伸縮效應改變晶體的扭曲程度造成場致CO-CD轉變。溫度低於180 K,Mn原子的磁矩開始形成p-CE型反鐵磁有序。在100 K至80 K間,磁矩發生部分自旋反轉的現象。25 K之下Pr亦呈現發生磁有序。本研究得以獲得磁場對溫度的相圖,呈現Pr0.65Ca0.25Sr0.1MnO3系統的物理特性。
室溫下Bi1-xCaxMn0.95Cr0.05O3(x=0.5、0.6)皆為斜方晶系的Pbnm空間群。x=0.5與0.6的樣品分別在285 K與在280 K時發生楊-泰勒扭曲。兩個樣品電阻率的實驗皆可以使用不定域跳躍的電阻率理論:ρVHR=ρ0exp[(T/T0)^1/4]來加以描述。這顯示了BCMCO系統中電子-聲子強烈的耦合。在90 K與80 K時,x=0.5與0.6的樣品分別發生Mn的磁有序。兩樣品磁結構均呈現叢集與鍊狀結構交錯的相分離現象。Cr摻雜破壞Mn-O-Mn的相關性,造成電荷有序態的抑制與Mn磁有序溫度降低。
Crystall structure of Pr0.65Ca0.25Sr0.1MnO3 at room temperature was revealed by using x-ray and neutron diffraction technologies. It crystallized into an orthorombic Pbnm phase at room temperature, and Jahn-Teller distortion was observed at 200 K. All high resolution neutron diffraction experiment, heat capacity, ac susceptibility, and resistivity measurements reveal a charge ordered state at 190 K, which can be transformed into the charge delocalized state by an applied magnetic field of strength larger then 2 T. We believed that it is the magnetostriction effect that transforms the CO state into the CD one. Below 180 K, the Mn moment becomes ordered into the p-CE AFM arrangement. A spin reorientation occurs between 100 K and 80 K. The Pr moments were also found to be ordered at 25 K. We obtained an H-T phase diagram for describing the thermo-magneto properties of Pr0.65Ca0.25Sr0.1MnO3.
Both Bi1-xCaxMn0.95Cr0.05O3, with x=0.5 and 0.6 crystallized into an orthorombic Pbnm phase at room temperature. The Jahn-Teller distortion were observed at 285 K and 280 K of the x=0.5 and 0.6 compounds, respectively. The resistivity can be described by variable range hopping mechanism, where ρVHR=ρ0exp[(T/T0)^1/4], indicating a strong electron and phonon coupling for the present BCMCO system. The Mn were orderd at 90 K and 80 K for x=0.5 and 0.6 compounds, respectively. Phase separation, where Mn4+ clusters were surrounded by Mn3+ ions, was revealed in the ordered spin arrangement at low temperatures.
摘要…………………………………………………………………………………………………I
Abstract……………………………………………………………………………………………II
致謝………………………………………………………………………………………………III
目錄…………………………………………………………………………………………………IV
圖目…………………………………………………………………………………………………V
表目………………………………………………………………………………………………IX

第一章 簡介
1.1 龐磁阻材料簡介………………………………………………………………………………1
1.2 研究目的………………………………………………………………………………………22
Reference…………………………………………………………………………………………23

第二章 樣品備製與實驗儀器
2.1 樣品備製……………………………………………………………………………………26
2.2 實驗儀器……………………………………………………………………………………27
Reference…………………………………………………………………………………………42

第三章 實驗理論
3.1 交流磁化率理論……………………………………………………………………………43
3.2 電阻率理論…………………………………………………………………………………48
3.3 比熱理論……………………………………………………………………………………51
3.4 中子散射理論………………………………………………………………………………54
Reference…………………………………………………………………………………………66

第四章 實驗結果與分析
4.1 Pr0.65Ca0.25Sr0.1MnO3結果分析…………………………………………………………67
4.2 Bi1-xCaxMn0.95Cr0.05O3結果分析………………………………………………………106
Reference………………………………………………………………………………………130

第五章 結論……………………………………………………………………………………132

附錄一 中子磁繞射強度模擬程式……………………………………………………………136
附錄二 中子磁繞射強度模擬程式輸入檔……………………………………………………151

Curriculumvitae………………………………………………………………………………152
Publications……………………………………………………………………………………153
Reference Chapter 1
1. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472, (1988).
2. R. Mahesh, R. Wang and M. Itoh, Phys. Rev. B 57, 104 (1998).
3. G. H. Jonker and J. H. Vansanten, Physica 16, 337 (1950).
4. C. Zener, Phys. Rev. 82, 403 (1951).
5. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
6. P.-G. de Gennes, Phys. Rev. 118, 141 (1960).
7. John B. Goodenough, Phys. Rev. 100, 564 (1955).
8. S. Roberts, Phys. Rev. 81, 865-868 (1951).
9. U. H. Bents, Phys. Rev. 106, 225-230 (1957)
10. E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).
11. J. Q. Li, M. Uehara, C. Tsuruta, Matsui, and Z. X. Zhao, Phys. Rev. Lett. 82, 2386 (1999).
12. H. Yoshizawa, H. Kawano, Y. Tomioka, and Y. Tokura, Phys.Rev. B 52, R13 145 (1995).
13. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, and Y. Tokura, Phys. Rev. B 53, R1689 (1996).
14. H. Yoshizawa, R. Kajimoto, H. Kawano, Y. Tomioka, and Y. Tokura, Phys. Rev. B 55, 2729 (1997).
15. M. R. Lees, J. Barratt, G. Balakrishnan, and D. McK. Paul, Phys. Rev. B 52, R14 303 (1995).
16. J. M. De Teresa, M. R. Ibarra, C. Marquina, P. A. Algarabel, and S. Oseroff, Phys. Rev. B 54, R12 689 (1996).
17. E. O. Wollan and W. C. Koehler, Phys. Rev 100, 545 (1955).
18. Z. Jirák, S. Krupicka, Z. Simsa, M. Dlouha, and Vratislav, J. Magn. Magn. Mater. 53, 153 (1985).
19. E. Pollert, S. Krupička, and E. Kuzmičová, J. Phys. Chem. Solids 43, 1137 (1982).
20. P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett.75, 3336 (1995).
21. H. Y. Hwang, T. T. M. Palstra, S-W. Cheong, and B. Batlogg, Phys. Rev. B 52, 15046 (1995).
22. Y. Moritomo, A. A. Asamitsu, and Y. Tokura, Phys. Rev. B 51, 16491 (1995).
23. Z. Jirak, S. Krupicka, Z. Simsa, M. Dlouha, and Z. Vratislav, 53, 153 (1985)
24. H. Yoshizawa, H. Kawano, Y. Tomioka, and Y. Tokura, Phys.Rev. B 52, R13 145 (1995).
25. M. R. Lees, J. Barratt, G. Balakrishnan, and D. McK. Paul, Phys. Rev. B 52, R14 303 (1995).
26. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, and Y. Tokura, Phys. Rev. B 53, R1689 (1996).
27. J. M. De Teresa, M. R. Ibarra, C. Marquina, P. A. Algarabel, and S. Oseroff, Phys. Rev. B 54, R12 689 (1996).
28. H. Yoshizawa, R. Kajimoto, H. Kawano, Y. Tomioka, and Y. Tokura, Phys. Rev. B 55, 2729 (1997).
29. D. E. Cox, P. G. Radaelli, M. Mrezio. S-W. Cheong, Phys. Rev. B 57, 3305 (1998).
30. V. A. Bokov, N. A. Grigoryan, and M. F. Bryzhina, Phys. Status Solidi 20, 745 (1967).
31. H. Chiba, M. Kikuchi, K. Kusaba, Y. Muraoka, and Y. Syono, Solid State Commun. 99, 499 (1996).
32. W. Bao, J. D. Axe, C. H. Chen, and S-W. Cheong, Phys. Rev. Lett. 78, 543 (1997).
33. H. L. Liu, S. L. Cooper, and S-W. Cheong, Phys. Rev. Lett. 81, 4684 (1998).
34. H. Woo, T. A. Tyson, M. Croft, S-W. Cheong, and J. C. Woicik, Phys. Rev. B 63, 134412 (2001).
35. Y. Moritomo, A. Machida, S. Mori, N. Yamamoto, A. Nakamure, Phys. Rev. B 60, 9220 (1999)
36. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995)

Reference Chapter 2
1. 中子架設相關資料與規格可在NIST網站查詢,詳細位置如下http://rrdjazz.nist.gov/instruments/
2. 詳細雙 模型的解釋在「Measurement of Heat Capacity By Fitting the Whole Temperature Response of a Heat-Pulse Calorimeter」的「fitting curve」一節,Jih Shang Hwang, Kai Lin, and Cheng Tien, Rev. Sci. Instrum. Vol. 68 (1), January 1997, p.94.
3. PPMS Hardware & Options Manual (Quantum Design 1999).

Reference Chapter 3
1. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Chap. 31-33, (Saunders College, Philadelphia, 1976).
2. C. Kittel, Introduction to Solid State Physics, 7th Ed., (J. Wiley and Sons, New York, 1996).
3. Chikazumi, Physics of Magnetism, (J. Wiley Serise on the Science and Technology of Materials, New York, 1964).
4. 黃昆(原著),韓汝琦(改編),固態物理學,高等教育出版社,北京,2002.
5. H. Y. Hwang, S-W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995).
6. A. J. Millis, Phys. Rev. B53, 8434, (1996).
7. L. J. Zou, H. Q. Lin, Q. Q. Zheng, J. App. Phys. 83 ,7362 (1998).
8. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2th Ed., Chap. 2, (Clarendon press, Oxford, 1979).
9. G. E. Bacon, Neutron Diffraction, 3th Ed., (Clarendon press, Oxford, 1975).
10. G. L. Squires, Introduction of the Theory of Thermal Neutron Scattering, (Cambridge University press, Cambridge, 1978).
11. S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Vol. 1, (Clarendon press, Oxford, 1984).

Reference Chapter 4
1. D. E. Cox, P. G. Padaelli, M. Marezio, and S-W Cheong, Phys. Rev. B, 57, 3305 (1998).
2. H. Yoshizawa, H. Kawano, Y. Tomioko, and Y. Tokura, Phys. Rev. B, 52, R13 145 (1995).
3. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).
4. H. Röder, J. Zang, and A. R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).
5. A. J. Millis, Phys. Rev. B 53, 8434 (1996).
6. C. Zener, Phys. Rev. 82, 403 (1951).
7. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
8. P.-G. de Gennes, Phys. Rev. 118, 141 (1960).
9. J. M. De Teresa, M. R. Ibarra, C. Marquina, and P. A. Algarabel, Phys. Rev. B 54, 12689 (1996).
10. E. O. Wollan and W. C. Koehler, Phys. Rev 100, 545 (1955).
11. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).
12. A. Banerjee, S. Pal, and B. K. Chaudhuri, J. Chem. Phys. 115, 1550 (2001).
13. X. Liu, H. Zhu, and Y. Zhang, Phys. Rev. B 65, 024412 (2002).
14. T. Kimura, R. Kumai, Y. Okimoto, Y. Tomioka, and Y. Tokura, Phys. Rev. B 62, 15021 (2000).
15. S. B. Oseroff, M. Torikachvili, J. Singley, S. Ali, S.-W. Cheong, and S. Schultz, Phys. Rev. B 53, 6521 (1996).
16. C. Rettori, D. Rao, J. Singley, D. Kidwell, and S. B. Oseroff, M. T. Causa, J. J. Neumeier, K. J. McClellan, S-W. Cheong, and S. Schultz, Phys. Rev. B 55, 3083 (1997).
17. H. Woo, T. A. Tyson, M. Croft, S-W. Cheong, and J. C. Woicik, Phys. Rev. B 63, 134412 (2001).
18. Y. Moritomo, A. Machida, S. Mori, N. Yamamoto, A. Nakamure, Phys. Rev. B 60, 9220 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 41.郭添財(民83),「從技術效率談學校最適經營規模」,教育研究,第39期,頁44-49。
2. 21.周碩樑(民88),「從學校教師會興起談學校行政的運作」,教師天地,第99期,頁67-71。
3. 58.謝承慶(民89),「『行政/教學』孰輕孰重?-國小教師難解的習題」,國教新知,第47卷第2期,頁18-22。
4. 56.謝金青(民80),「從態度與工作滿足論校園職工人員的領導與管理」,教育研究雙月刊,第21期,頁48-58。
5. 20.周愫嫻(民85),「家長會與學校的對話關係」,北縣教育,第13期,頁20-24。
6. 13.林水木(民92),「學校行政、教師會與家長會組織關係之探析」,學校行政,第26期,頁128-143。
7. 46.舒緒緯(民92),「台灣地區教師組織專業權運作之研究」,國民教育研究,第7期,頁43-73。
8. 9. 吳清山(民85),「共創學校與家長會雙贏局面」,北縣教育,第13期,頁14-19。
9. 6. 吳俊佑(民92),「反省教育評鑑和教學評鑑的本質與問題」,竹縣文教,第28期,頁49-51。
10. 3. 江文雄(民88),「校長做得好、不必怕評鑑-談校長評鑑的觀念」,教育資料與研究,第28期,頁17-21。
11. 2. 王誕生(民87),「讓教師專業生涯發展,掌握在教師自己手中」,教育實習輔導,第4卷第1期,頁5-10。
12. 6. 吳克 (2001),「策略聯盟的形成與夥伴選擇」,金屬工業,第35卷2期,頁138-1
13. 59.戴國瑜(民92),「從組織變革談學校行政、家師會與家長會之定位和發展策略」,學校行政,第23期,頁124-132。