跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/24 10:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高光正
研究生(外文):Kuang-Cheng Kao
論文名稱:鈀/鎢(111)和鈀/鉬/鎢(111)表面的可逆皺/平相變之研究
論文名稱(外文):Mass Transport of Adsorbate During Reversible faceted/planar phase transition for Pd/W(111) and Pd/Mo/W(111)
指導教授:粘正勳
指導教授(外文):Cheng-Hsun Nien
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:59
中文關鍵詞:相變
外文關鍵詞:phase transition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在超高真空(約1 x 10-10 torr)的環境下,我們利用了可程式控溫歐傑能譜(Temperature Programmed Auger, TPA)和可程式控溫低能量電子繞射(Temperature Progammed Low Energy Electron Diffraction, TPLEED)和可程式控溫熱脫附(Temperature Progammed Desorption ,TPD), 來研究鈀(Pd)覆蓋層及鉬(Mo)中間層對於鎢(W)基版的影響,亦即Pd/W(111)和Pd/Mo/W(111)表面系統中,溫度對表面結構變化的影響。在Pd/W(111)的系統中,我們用TPLEED得到表面在高溫下的即時資訊,進而觀測到可逆的皺/平相變 : (111)���� {112}。另外由TPA中Pd的訊號,更進一步發現在產生皺/平相變的溫度下,當形成(111)平面時,沾附於表面的Pd,其厚度是會稍微減少至約1.2個物理單層(physical monolayer, PML),但在形成皺化{112}面時,Pd的厚度會稍微提升約0.1PML。至於在Pd/Mo/W(111)的系統中,當Mo增加到1PML時,發生相變的溫度會下降約300K,同時相變的緩滯區之寬度也會減少約45K,且相變的存在會越來越不明顯,所以Pd在Mo/W(111)的行為越來越像是Pd/Mo(111)的模式。若鉬的厚度繼續增加,則發生相變的溫度也會隨之下降。
We have used Temperature Programmed Auger (TPA) and Temperature Progammed Low Energy Electron Diffraction (TPLEED) and Temperature Progammed Desorption (TPD) to study the effect of temperature on the surface structure of Pd/W(111) and Pd/Mo/W(111) in an ultrahigh vacuum (UHV) chamber with a base pressure of 1 x 10-10 torr. In Pd/W(111) surfaces, we can get the real-time information of the surface at high temperature and then observe the reversible faceted/planar phase transition. Furthermore, TPA reveals that the apparent coverage of Pd changes across the transition. When the planar (111) surface appears, the wetting layer of Pd slightly reduces to about 1.2PML (physical monolayer). Besides, the coverage of Pd slightly raises about 0.1PML in the faceted surface below the temperature of the phase transition. In the case of Pd/Mo/W(111) surfaces, when the coverage of Mo is added to about 1PML, the temperature of phase transition reduces 300K and the width of the hysteresis also reduces by 45K. In addition, the phase transition becomes less apparent. Thus, the behavior of Pd on Mo/W(111) is closer and closer to that of Pd/Mo(111) as more and more Mo is added. For even thicker Mo layers, surprisingly, the temperature (as well as its width) of the phase transition is lowered with the increased coverage of Mo.
Contents
Abstract………………………………………………………………….ii
List of Figures…………………………………………………………...v
List of Abbreviations……………………..............................................vii
1. Introduction………………………………………………………….1
References………………………………………………..………..3
2. Basic Concepts of Ultrathin Film Growth……………………….....5
3. Analytical Tools and Theory………………………………………...8
3.1 Auger Electron Spectroscopy (AES)………………………….....8
3.1.1 Principle of AES……………………………………………8
3.1.2 Setup of AES………………………………………………10
3.1.3 Temperature Programmed Auger (TPA)…………………..10
3.2 Low Energy Electron Diffraction (LEED)………………………11
3.2.1 Principle of LEED…………………………………………11
3.2.2 Setup of LEED…………………………………………….13
3.2.3 Temperature Programmed Low Energy Electron
Diffraction (TPLEED)……………………………………13
3.3 Temperature Programmed Thermal Desorption (TPD)………….14
3.3.1 Principle of TPD…………………………………………..14
3.3.2 Setup of TPD………………………………………………16
3.3.3 Applications……………………………………………….16
References………………………………………………..………20
4. Experimental Apparatus and Procedure………………………….21
4.1 Apparatus……………………………………………………..21
4.2 Experiment…………………………………………………...22
5. Results and Discussion……………………………………………..24
5.1 Pd/W System…………………………………………………..24
5.1.1 Calculation of the Pd Apparent Thickness………………..24
5.1.2 Reversible Phase Transition and Influence of
3-d Clusters……………………………………………….29
5.2 Pd/Mo/W System……………………………………………….40
5.2.1 Calculation of the Mo Apparent Thickness from Effective
Attenuation Lengths…………………………………….....40
5.2.2 Apparent Thickness-Dependent Effects of Mo…………...44
References………………………………………………………48
6. Conclusion…………………………………………………………...49
Bibliography……………………………………………………………50
J. Block, J.J. Kolodziej, J.E. Rowe, T.E. Madey, E. Schroder, Thin Solid Films 428 (2003) 47.

C.T. Chan, J.G. Che, T.C. Leung, Prog. Surf. Sci. 59 (1998) 1.

C.-Z. Dong, S.M. Shivaprasad , K.-J. Song and T.E. Madey , J. Chem. Phys. 99 (1993) 9172.]

J. Guan, Ph.D. thesis, Rutgers, The State University of New Jersey, (1994)
G. Herring, Phys. Rev. 82 (1951) 87.

T.E. Madey, J. Guan, C.-H. Nien, C.-Z. Dong, H.-S. Tao, R.A. Campbell, Surf. Rev. Lett. 3 (1996) 1315.

T.E. Madey, C.-H. Nien, K. Pelhos, J.J. Kolodziej, I.M. Abdelrehim, H.-S. Tao, Surf. Sci. 438 (1999) 191.

C.-H. Nien, T.E. Madey, Y.W. Tai, T.C. Leung, J.G. Che, C.T. Chan, Phys. Rev. B 59 (1999) 10335.

C.-H. Nien, T.E. Madey, Surf. Sci. 380 (1997) L527.

C.-H. Nien, “Atomic-Resolution Studies of Overlayer-Induced Restructuring on W(111) Surfaces, Rugers”, Ph.D.thesis, The State University of New Jersey, (1999) 94.

Czeslaw Oleksy, Surf. Sci. 549 (2004) 246.

G.A. Somorjai, Chemistry In Two Dimensions: Surfaces, (Cornell University Press, Ithaca and London, 1981)

K.-J. Song, C.-Z. Dong and T.E. Madey, Langmuir 7 (1991) 3019

K.-J. Song, J.C. Lin, M.Y. Lai, Y.L. Wang, Surf. Sci. 327 (1995) 17.

K.-J. Song, W.-R. Chen, V. Yeh, Y.-W. Liao, P.-T. Taso, M.-T. Lin, Surf. Sci. 478 (2001) 145.

R. Szukiewicz, J. Kołaczkiewicz, Surf. Sci. 547 (2003) L837.

D.P. Woodruff and T.A. Delchar, Modern, techniques of surface science, (Cambridge University press, Cambridge, 1988).

A. Zangwill, PHYSICS AT SURFACE, (Cambridge University press, Cambridge, 1988).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top