跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明道
研究生(外文):Ming-Tao Lee
論文名稱:抗菌胜肽在胞膜上形成孔洞的機制
論文名稱(外文):Pore formation in membranes induced by antimicrobial peptides
指導教授:陳方玉
指導教授(外文):Fang-Yu Chen
學位類別:博士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:62
中文關鍵詞:指向性圓極化雙光譜技術胜肽的方位脂質雙層膜相變雙親性孔洞抗菌胜肽胞膜多片層X光繞射技術脂膜的厚度分子動力模擬基因與藥物輸送抗感染的治療藥物設計
外文關鍵詞:toroidal poresoriented circular dichroismpeptide orientationOCDlamellar x-ray diffractionmolecular dynamic simulationsdrug designLXDgene and drug deliveriesanti-infective therapeuticsmembraneantimicrobial peptidesporesbarrel-stave poresphase transitionthinning effectamphiphilicsurface-stretched
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1024
  • 評分評分:
  • 下載下載:101
  • 收藏至我的研究室書目清單書目收藏:0
論文提要

當胞膜表面吸附抗菌胜肽時,若抗菌胜肽夠密集,就會使膜上產生穩定的孔洞。本文將從理論和實驗的層面來了解抗菌胜肽引發孔洞形成的機制。

當抗菌胜肽吸附於膜表面時,會展現雙親性(即親油/親水)的結構。並且會埋入膜的頭部區,使得膜的親油(碳鏈)區面積被延展,造成膜的厚度變薄。由於實驗證明膜厚度的變薄和胜肽濃度成正比,因此我們提出一個理論來說明胜肽濃度高時:1.膜厚度的變薄足以產生孔洞;2.部份胜肽會從膜表面轉移到孔洞的邊緣來穩定孔洞。這種胜肽轉移形成孔洞的過程類似一個相變。

實驗上,使用兩種被廣為研究的胜肽(alamethicin和melittin)與不同的脂質雙層膜作用來研究孔洞產生的過程。此兩種胜肽與膜作用分別會產生兩種不同型態的孔洞(barrel-stave孔洞和toroidal孔洞)。我們使用兩種實驗技術:1.指向性圓極化雙光譜技術,用來測定胜肽的方位--平行膜面,即吸附於膜表面;垂直膜面,即吸附於孔洞邊緣;2.多片層X光繞射技術,用來測量胜肽造成脂質雙層膜厚度的變化。實驗將測量一系列胜肽的方位和脂膜的厚度隨胜肽濃度的變化。

所有的實驗結果都非常符合我們理論的預測。結合理論與實驗結果可得到因�D肽與膜作用而形成孔洞的相關參數值。我們討論這些參數的意義,而且比較不同胜肽,不同脂膜和不同型態的孔洞所具有的參數值。這些參數值在分子層次的分析上以及分子動力模擬的研究上非常有用。除此以外,本論文中的結果在基因與藥物輸送、藥物設計和抗感染的治療上也具有很高的應用價值。
Abstract

When membrane surface adsorbs antimicrobial peptides, stable pores are found to emerge if the adsorbed peptides are sufficiently dense. This thesis presents both experimental and theoretical approaches to the understanding of such pore formation induced by antimicrobial peptides.

When binding to membrane surface, antimicrobial peptides exhibit amphiphilic structure and embed themselves into the headgroup region of the membrane. As a result, the hydrophobic (carbon chain) region of the membrane is surface-stretched or equivalently is thinning. Based on the fact that the thinning effect is increased with peptide concentration, we proposed a theory to show: 1. The membrane thinning in high peptide concentration can be sufficiently strong to make pores on membrane; 2. The pores can be stabilized by transferring a fraction of peptides to the pore wall, resembling as a phase transition.

Experimentally, we investigated the pore formation process in model bilayer membranes of various lipid compositions. Two of the best-study peptides, alamethicin and melittin, were used to represent peptides making two different types of pores, that is, barrel-stave pores and toroidal pores. Two methods were employed in experiments. They are: 1. Oriented circular dichroism (OCD) to monitor the peptide orientation, either parallel (surface adsorbed) or perpendicular (pore wall adsorbed), to the membrane surface; 2. Lamellar x-ray diffraction (LXD) to measure the membrane bilayer thickness. Experiments were conducted to measure the peptide orientation and the membrane thickness as a function of peptide concentration.

All experimental results were in agreement with the prediction of the proposed theory. The parameters that characterize the peptide-membrane interaction related to the pore formation were extracted from the experimental results. We discussed the meaning of these parameters and compared their values for different lipids and for the two different types of pores. These parameters are useful for further molecular analysis and are excellent targets for molecular dynamic simulations studies. The results in this thesis are also potentially useful for gene and drug deliveries, drug design and anti-infective therapeutics.
Abstract III

Acknowledge IV
Table of figures VI

Abbreviations VIII

I. Introduction 1

II. Theory 12
II-1. Peptides create membrane tension by stretching the membranes 12
II-2. Formation of stable pore 15
II-3. Free energy of membrane-peptide system when pores form 18

III. Materials and Methods 20
III-1. Materials 20
III-2. Sample preparation 21
III-3. OCD measurement 21
III-4. LXD measurement 26

IV. Results 32
IV-1. Fraction of peptides in pore state as a function of P/L 32
IV-2. Membrane thickness as a function P/L 33
IV-3. Discussions of experimental parameters 39

V. Conclusion 45

References 47

Publications 52
References

1. Boman, H. G., Marsh, J. and Goode, J. A. Eds. (1994) Antimicrobial Peptides. Ciba Foundation Symposium 186, 1-272, John Wiley & Sons, Chichester.
2. Martin, E., Ganz, T., and Lehrer, R. I. (1995) Defensins and other endogenous peptide antibiotics of vertebrates, J. Leukocyte Biol. 58, 128-136.
3. Ganz, T. (1999) Defensins and host defense, Science 286, 420-421.
4. Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms, Nature 415, 389-395.
5. Albert, b. et al. (2002) Molecular Biology of The Cell, 4th ed., Garland Science, New York.
6. He, K., Ludtke, S. J., Worcester, D. L. and Huang, H. W. (1995) Antimicrobial peptide pores in membranes detected by neutron in-plane scattering, Biochemistry 34, 16764-16769.
7. He, K., Ludtke, S. J., Worcester, D. L. and Huang, H. W. (1996) Neutron scattering in the plane of membranes: structure of alamethicin pores, Biophys. J. 70, 2659-2666.
8. Habermann, E. (1972) Bee and wasp venom: the biochemistry and pharmacology of their peptides and enzymes are reviewed, Science 177, 314-322.
9. Zasloff, M. (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor, Proc. Natl. Acad. Sci. USA 84, 5449-5453.
10. Fox, R. O. and Richards, F. M. (1982) A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution, Nature 300, 325-330.
11. Terwilliger, T. C., Weissman, L. and Eisenberg, D. (1982) The structure of melittin in the form I crystals and its implication for melittin’s lytic and surface activities, Biophys. J. 37, 353-361.
12. Aumelas, A. et al. (1996) Synthesis and solution structure of antimicrobial peptide protegrin-1, Eur. J. Biochem. 237, 575-583.
13. Tang, Y. Q. et al. (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated a-Defensins, Science 286, 498-502.
14. Pandey, R. C., Cook, J. C., and Rinehart, K. L. (1977) High resolution and field desorption mass spectrometry studies and revised structure of alamethicin I and II, J. Am. Chem. Soc. 99, 8469-8483.
15. Vogel, H. and Jahning, F. (1986) The steucture of melittin in membranes, Biophys. J. 50,573-582.
16. Helenius, A. and Simons, K. (1975) Solubilization of membranes by detergents, Biochim Biophys. Acta 415, 29-79.
17. Habermann,E., and Jentsch, J. (1967) Sequenzanalyse des melittins aus den tryptischen und peptischen spaltstucken, Hope-Seyler Z. Physiol. Chem. 348, 37-50.
18. McIntosh, T. J., and Simon, S. A. (1986) Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers, Biochemistry. 25, 4948-4952.
19. Nagle, J. F. and Tristram-Nagle, S. (2000) Structure of lipid bilayers, Biochim. Biophys. Acta 1469, 159-195.
20. Harroun, T. A., Heller, W. T., Weiss, T. M., Yang, L. and Huang, H. W. (1999a) Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin, Biophys. J. 76, 937-945.
21. Harroun, T. A., Heller, W. T., Weiss, T. M., Yang, L. and Huang, H. W. (1999b) Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin, Biophys. J. 76, 3176-3185.
22. Hung, W.-C., and Chen F.-Y. (2003) Hydrophobic-hydrophilic interface of phospholipid membrane studied by lamellar x-ray diffraction, Chinese J. Phys. 41, 85-91.
23. Hung, W.-C. (2000) The lamellar x-ray diffraction of membranes, PHD.
24. Huang, H. W. (1986) Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime, Biophys. J. 50, 1061-1070.
25. Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D. and Evans, E. (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers, Biophys. J. 79, 328-339.
26. Helfrich, W. (1973) Elastic properties of lipid bilayers: Theory and possible experiment. Z. Naturforsch. 28C, 693-703.
27. Huang, H. W. (1995) Elasticity of lipid bilayer interaction with amphiphilic helical peptides, J. Phys. II France 5, 1427-1431.
28. Litster, J. D. (1975) Stability of lipid bilayers and red blood cell membranes, Phys. Lett. 53A, 193-194.
29. Taupin, C., Dvolaitzky, M. and Sauterey, C. (1975) Osmotic pressure induced pores in phospholipid vesicles, Biochemistry 14, 4771-4775.
30. Olah, G. A., and Huang, H. W. (1988) Circular Dichroism of Oriented a-Helices. I. Proof of the Exciton Theory, J. Chem. Phys. 89, 2531-2538.
31. Wu, Y., Huang, H. W., and Olah, G. A. (1990) Method of Oriented Circular Dichroism, Biophys. J. 157, 797-806.
32. Chen, F. Y., Hung, W. C., and Huang, H. W. (1997) Critical swelling of phospholipid bilayers, Phys. Rev. Lett. 79, 4026-4029.
33. Huang, H. W. (2000) Action of antimicrobial peptides: Two-state model, Biochemistry 39, 8347-8352.
34. He, K., Ludtke, S. J., Worcester, D. L. and Huang, H. W. (1995) Antimicrobial peptide pores in membranes detected by neutron in-plane scattering, Biochemistry 34, 16764-16769.
35. He, K., Ludtke, S. J., Worcester, D. L. and Huang, H. W. (1996) Neutron scattering in the plane of membranes: structure of alamethicin pores, Biophys. J. 70, 2659-2666.
36. Yang, L., Harroun, T. A., Weiss, T. M., Ding, L. and Huang, H. W. (2001) Barrel-stave model or toroidal model? A case study on melittin pores, Biophys. J. 81, 1475-1485.
37. Wu, Y, He, K., Ludtke, S. J. and Huang, H. W. (1995) X-ray diffraction study of lipid bilayer membrane interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations, Biophys. J. 68, 2361-2369.
38. Blaurock, A. E. (1971) Structure of the nerve myelin membrane: proof of the low resolution profile, J. Mol. Biol. 56, 35-52.
39. Perutz, M. F. (1954) The structure of haemoglobin. III. Direct determination of the molecular transform, Proc. Roy. Soc. ser A, 225, 264-286.
40. Torbet, J., and Wilkins, M. H. F. (1976) X-ray diffraction studies of lecithin bilayers, J. Theor. Biol. 62, 447-458.
41. Guinier, A. (1994) X-ray diffraction in crystals, imperfect crystals, and amorphous bodies, Dover Publications, New York. pp 151-251.
42. Hirsh, D. J., Hammer, J., Maloy, W. L., Blazyk, J. and Schaefer, J. (1996) Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers, Biochemistry 35, 12733-12741.
43. Bechinger, B., Kim, Y., Chirlian, L. E., Gesell, J., Neumann, J.-M., Motal, M. Tomich, J., Zasloff, M., and Opella, S. J. (1991) Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy, J-Bio NMR 1, 167-173.
44. Williams, R. W., Starman, R., Taylor, K. M. P., Cable, K., Beeler, T., Zasloff, M. and Covell, D. (1990) Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa, Biochemistry 29, 4490-4496.
45. Matsuzaki, K., Murase, O., Tokuda, H., Fumakoshi, S., Fujii, N., and Miyajima, K. (1994) Orientational and aggregational states of magainin 2 in phospholipid bilayers, Biochemistry 33, 3342-3349.
46. Matzuzaki, K., Harada, M., Fumakoshi, S., Fujii, N., and Miyajima, K. (1991) Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid blayers, Biochim. Biophys. Acta. 1063, 162-170.
47. Wenk, M. R., and Seelig, J. (1998) Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation, Biochemistry 37, 3909-3916.
48. Wieprecht, T., Beyermann, M. and Seelig, J. (1999) Binding of antimicrobial magainin peptides to electrically neutral membranes: thermodynamics and structure, Biochemistry 38, 10377-10387.
49. Longo, M. L., Waring, A. J., Gordon, L. M., and Hammer, D. A. (1998) Area expansion and permeation of phospholipid membrane bilayers by influenza fusion peptides and melittin, Langmuir 14, 2385-2395.
50. Gazit, E., Lee, W. J., Brey, P. T. and Shai, Y. (1994) Mode of action of the antibacterial Cecropin B2: a spectrofluometric study, Biochemistry 33, 10681-10692.
51. Gazit, E., Boman, A., Boman, H. and Shai, Y. (1995) Interaction of the mammalian antibacterial peptide Cecropin P1 with phospholipid vesicles, Biochemistry 34, 11479-11488.
52. Hirsh, D. J., Hammer, J., Maloy, W. L., Blazyk, J. and Schaefer, J. (1996) Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers, Biochemistry 35, 12733-12741.
53. Barranger-Mathys, M. and Cafiso, D. S. (1993) Collisions between helical peptides in membranes monitored using electron paramagnetic resonance: evidence that alamethicin is monomeric in the absence of a membrane potential, Biophys. J. 67, 172-176.
54. DeGrado, W. F., Kezdy, F. J. and Kaiser, E. T. (1981) Design, synthesis and characterization of a cytotoxic peptide with melittin-like activity, J. Am. Chem. Soc. 103, 679-681.
55. Huang, H. W. and Wu, Y. (1991) Lipid-alamethicin interactions influence alamethicin orientation, Biophys. J. 60, 1079-1087.
56. Heller W. T., Waring, A. J., Lehrer, R. I. and Huang, H. W. (1998) Multiple states of b-sheet peptide protegrin in lipid bilayers, Biochemistry 37, 17331-17338.
57. Ludtke, S. J., He, K., Heller, W. T., Harroun, T. A., Yang, L. and Huang, H. W. (1996) Membrane pores induced by magainin, Biochemistry 35, 13723-13728.
58. Heller, W. T., He, K., Ludtke, S. J., Harroun, T. A. and Huang, H. W. (1997) Effect of changing the size of lipid headgroup on peptide insertion into membranes, Biophys. J. 73, 239-244.
59. Olbrich, K., Rawicz, W., Needham, D. and Evans, E. (2000) Water permeability and mechanical strength of polyunsaturated lipid bilayers, Biophys. J. 79, 321-327.
60. Huang, H. W. (1986) Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime, Biophys. J. 50, 1061-1070.
61. Weiss, T. M., van der Wel, P. C. A., Killian, J. A., Koeppe II, R. E. and Huang, H. W. (2003) Hydrophobic mismatch between helices and lipid bilayers, Biophys. J. 84, 379-385.
62. Olah, G. A., Huang, H. W., Liu, W. and Wu, Y. (1991) Location of ion binding sites in the gramicidin channel by x-ray diffraction, J. Mol. Biol. 218, 847-858.
63. Elliott, J. R., Needham, D., Dilger, J. P. and Hayden, D. A. (1983) The effects of bilayer thickness and tension on gramicidin single-channel lifetime, Biochim. Biophys. Acta 735, 95-103.
64. Kuchinka, E. and Seelig, J. (1989) Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation, Biochemistry 28, 4216-4221.
65. Beschiaschvili, G. and Seelig, J. (1990) Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes, Biochemistry 29, 52-58.
66. Steiner, H., Andreu, D., Merrifield, R. B. (1988) Binding and action of cecropin and cecropin analogs: antibacterial peptides from insects, Biochim. Biophys. Acta 939, 260-266.
67. Hoffmann, J. A., Kafatos, F. C., Janeway Jr., C. A. and Ezekowitz, R. A. B. (1999) Phylogenetic perspectives in innate immunity, Science 284, 1313-1318.
68. Wang, W., Cole, A. M., Hong, T., Waring, A. J. and Lehrer, R. I. (2003) Retrocyclin, an antiretroviral -defensin, is a lectin, J. Immunology 170, 4708-4716.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top