跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 02:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張纈鐘
研究生(外文):Hsieh-Chung Chang
論文名稱:一般化的美式選擇權解析上界
論文名稱(外文):Generalized Analytical Upper Bounds for American Option Prices
指導教授:張森林張森林引用關係陳建中陳建中引用關係
指導教授(外文):San-Lin ChungChien-Chung Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:財務金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:37
中文關鍵詞:上界封閉解隨機利率隨機波動性
外文關鍵詞:closed formstochastic interest ratestochastic volatilityupper bound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
美式選擇權需要使用樹狀法才能求出較精確的價格,但是在大於一個狀態變數時,其計算會變的相當費時且困難。本論文提供了在隨機利率、隨機波動性及存在股價跳躍環境下美式買權上界的解析解(封閉解),它提供了一個有效的指導方針可以讓我們知道美式選擇權理論價格的最高界限。我們亦修正了Chen 與 Yeh 兩位學者在2002年文章中的數值與公式錯誤,並且將他們文章中所提出的定理1做更一般化的修改來得到一個更接近美式買權理論價格的上界。在我們更一般化的觀念下,我們可以得到定理二,並且將其應用到當利率小於股利下,美式買權上界的例子。最後,我們應用定理2至一個美式互換選擇權的例子作為結尾。
American options require lattice method to provide accurate price estimates. But it will be very time-consuming and difficult when more than one state variable is involved. In this paper, we develop analytical (closed form) upper bounds for American call options under stochastic interest rates, stochastic volatility, and jumps environment. It will provide a useful guideline for how high American values can reach. Also, we correct the numerical errors and formula typo in Chen and Yeh (2002) and generalize their theorem1 to derive a tighter upper bound of American calls when interest rate is greater than dividend yield. With our generalized concept, we can derive theorem 2 and apply the result to the call option case where interest rate is less than dividend yield. Finally, we will demonstrate another case about the exchange option using our theorem 2 as ending.
Abstract……………………………………………………………………………..…I
1. Introduction……………………………………………………………………..…1
2. Literature Review………………………………………………………………….3
3. General Analysis……………………………………………………………….……..5
3.1 Generalized Theorem 1 of Chen and Yeh (2002)………………………… …...5
3.1.1 American Calls on Dividend Paying Stocks (when r > d)………….…..7
3.2 Theorem 2 and its applications…………………………………………...……7
3.2.1 American Call Options on Dividend Paying Stocks (when r < d)…….8
3.2.2 American Exchange Option on Dividend Paying Stocks……………...9
4. Modeling……………………………………………………………………………..11
4.1 American Calls on Dividend Paying Stocks when r > d………………………11
4.2 American Calls on Dividend Paying Stocks when r < d………………………13
4.3 Jumps……………………………………………………………..………...14
4.4 American Exchange Options on Dividend Paying Stocks…………………….15
5. Numerical Result……………………………………………………………………..18
5.1 Correct errors in Chen and Yeh (2002)………………………………………...18
5.2 American Calls on Dividend Paying Stocks (when r > d)……………………..21
5.3 American Calls on Dividend Paying Stocks (when r < d)……………………..21
5.4 American Exchange Options…………………………………………………..22
6. Conclusion……………………………………………………………………………24

Appendix A. Correct formula typo of Chen and Yeh (2002)…………… … ………….. 25
A1. Derivation of the Futures Price……………………………………..……… …25
A2. Derivation of the Characteristic Functions of Calls………………………....…26
A3. Derivation of the Characteristic Functions of Puts……………………………..28
A4. Derivation of the Characteristic Functions of Futures Options………………...29
Appendix B. Derivation of and the Characteristic Functions of
Tighter Upper Bound of Calls When r>d………………………………….31
Appendix C. Derivation of the Characteristic Functions of Upper
Bound of Calls When r<d………………………………………………….33

References……………………………………………………………………………….35
[1] Bakshi, G.; C. Cao; and Z. Chen., 1997, "Empirical Performance of Alternative Option Models." Journal of Finance, 52, 2003-2049.

[2] Barone-Adesi, Giovanni, and Robert Whaley, 1987, "Efficient Analytic Approximation of American Option Values." Journal of Finance, 42(2), 301-320

[3] Bates, D. S., 1996, "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in PHLX Deutschemark Options." Review of Financial Studies, 9, 69-108

[4] Bates, David, 2000, "Post-'87 Crash Fears in the S&P 500 Futures Option Market." Journal of Econometrics, 94, 145-180

[5] Black, F., and M. Scholes, 1973, "The Valuation of Options and Corporate Liabilities." Journal of Political Economy, 81, 637-654

[6] Bjerksund, P., and Stensland, G., 1993, "American Exchange Options and a Put-Call Transformation: A Note", Journal of Business, Finance, and Accounting, 20, 5, 761-764

[7] Carr, P.; R.Jarrow; and R.Myneni.,1992, "Alternative Characterizations of American Put Options." Mathematical Finance, 2, 87-106

[8] Chaudhury, M., and J. Wei. , 1994, "Upper Bounds for American Futures Options: A Note." Journal of Futures Markets, 14, 111-116

[9] Chaudhury, M., 1995, "Some Easy-To-Implement Methods of Calculating American Futures Option Prices. " Journal of Futures Markets, 15(3), 303-344

[10] Chen Ren-Raw, Chung San-Lin, Yang Tyler T., 2002, "Option pricing in a multi-asset, complete market economy" Journal of Financial and Quantitative Analysis, 37, 4, 649

[11] Chen, Ren-Raw, and Yeh, Shih-Kuo, 2002, "Analytical Upper Bounds for American Option Prices." Journal of Financial and Quantitative Analysis, 37, 117-135.

[12] Cox, J.;J. Ingersoll;and S. Ross., 1981, "The Relation between Forward Prices and Futures Prices." Journal of Financial Economics, 9, 321-346

[13] Heston, S., 1993, "A Closed Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options." Review of Financial Studies, 6 , 327-343.

[14] Hull, J., and A. White., 1987, "The Pricing of Options on Assets with Stocastic Volatilities." Journal of Finance, 42, 281-300

[15] Hull, J., and A. White., 1994, "Numerical Procedures for Implementing Term Structure Models :Single-Factor Models." Journal of Derivatives, 2, 1, 7-16

[16] Hull, J., 2003, Options, Futures, AND Other Derivatives, fifth edition, Prentice Hall.

[17] Kendall, M., and A. Stuart, 1977, The Advanced Theory of Statistics (Vol. 1), Macmillan, New York.

[18] Levy, H., 1985, "Upper and Lower Bounds of Put and Call Option Value: Stochastic Dominance Approach." Journal of Finance, 40, 1197-1217

[19] Lo, A., 1987, "Semi-Parametric Upper Bounds for Option Prices and Expected Payoff." Journal of Financial Economics, 19, 373-388

[20] Margrabe, M., 1978, "The Value of An Option to Exchange One Asset For Another." Journal of Finance, vol. XXXIII, No.1, March, 177-186

[21] Melick, William R., and Charles P. Thomas, 1997, "Recovering an Asset's Implied PDF From Option Prices: An Application to Crude Oil during the Gulf Crisis." Journal of Financial and Quantitative Analysis, 32(1), 91-115

[22] Merton, R. C., 1973, "The Theory of Rational Option Pricing." The Bell Journal of Economics and Management Science, Vol. 4, 141-183

[23] Merton, R. C., 1976, "Option Pricing When Underlying Stock Returns Are Discontinuous." Journal of Financial Economics, 3, 125-144

[24] Perrakis, S., and J. Ryan., 1984, "Option Pricing in Discrete Time." Journal of Finance, 39, 519-525

[25] Perrakis, S., 1986, "Option Pricing Bounds in Discrete Time: Extensions and the Pricing of the American Put." Journal of Business, 59, 119-141

[26] Ritchken, P., 1985, "On Option Pricing Bounds." Journal of Finance, 40, 1219-1233

[27] Scott, L., 1987, "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application." Journal of Financial and Quantitative Analysis, 22, 419-438

[28] Scott, L., 1997, "Pricing Stock Options in a Jump-Diffusion Model with Stochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods." Mathematical Finance, 7, 413-426

[29] Wiggins, J., 1987, "Option Values under Stochastic Volatility: Theory and Empirical Estimates." Journal of Financial Economics, 19, 351-372

[30] Zhang, P., 1994, "Bounds for Option Prices and Expected Payoffs." Review of Quantitative Finance and Accounting, 4, 179-197

[31] 陳松男, 2002, 金融工程學, 華泰出版社
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top