跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 02:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張富達
研究生(外文):Fu-Ta Chang
論文名稱:國內選擇權市場波動率指數(VIX)之建構與分析
論文名稱(外文):The Construction and Analysis of the Volatility Index of Taiwan’s Option Market
指導教授:張傳章張傳章引用關係
指導教授(外文):Chuang-Chang Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:財務金融學系碩士在職專班
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:82
中文關鍵詞:波動率選擇權波動率指數情緒指標
外文關鍵詞:volatilityVIXsentiment indicator
相關次數:
  • 被引用被引用:8
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基於國內選擇權市場的蓬勃發展、情緒指標的研究日益受到重視以及國內選擇權市場分析工具的缺乏,本文介紹國外選擇權波動率指數的編製方法,諸如美國的VIX、法國的VX1, VX6 以及德國的VDAX。其主要的目的在建構國內選擇權的波動率指數 (VIX)以及VIX對國內加權指數的分析。
研究方法為在Black-Scholes 模型下,運用CBOE的方法以編製國內的VIX,並以各種不同參數的選用下共編製12種VIX。同時運用統計分析及檢定那一個VIX最能解釋台灣加權指數的狀況,以找出最適的VIX。並研究此VIX與加權指數在各月及各季的相關性和顯著性,和加權指數在上升及下降趨勢時VIX的反應,以及分析影響VIX的因子及建構迴歸模型。
研究結果顯示,VIX與加權指數呈中度負相關,是一個有用的反向指標;且發現對10月、11月及12月呈相關係數為-0.9以上的高度負相關,並可解釋加權指數的變異高達90%左右。另從本文的研究可以發現,當月VIX的中位數與第一四分位數同時向下逼近5%分位數時,為加權指數高點所在;而當月VIX的中位數與第三四分位數向上逼近95%分位數時為加權指數低點所在。
至於有那些因素影響VIX,在假設因子的迴歸分析與經過最佳自變數選擇後,研究結果顯示影響VIX的因素有,來自加權指數的有日成交量、指數位置、與前一日的報酬、波段漲跌;來自台指期貨的有與加權指數的正逆價差、日高低振幅;來自期間的有四季;以及來自VIX本身與前一日的報酬;此迴歸模型可以解釋VIX 40.04%的變異。
In light of the booming volume of the option trade, the growing study on the sentiment indicator and the lack of analysis method for the domestic option market, this thesis aims to introduce the construction of volatility index (VIX) applied to the major markets worldwide. The reference index, such as the VIX for US, the VX1 and VX6 for the French and the VDAX for the German market will be discusses in depth in order to build up the domestic VIX and its further analysis.
By adopting the Black-Scholes model together with the method by CBOE (Chicago Board Option Exchange), 12 sets of VIX are constituted with its respective parameters. The employment of statistic test helps to identify which VIX would apply to Taiwan’s weighted index. Furthermore, the emphasis will be placed upon the correlation and significance level between the VIX and the weighted index with different time interval. By doing so, the VIX could be clearly depicted responding to the weighed index, upward or downward together with factors contributing to it. And the regression model would thus be conducted.
The result shows that VIX and the weighted index are in moderate correlated negatively,which constitutes an efficient contrary indicator. Moreover, the study proves that in Oct, Nov and Dec, the correlation coefficient is above –0.9, a figure that would apply to approximately 90% of the variance of the weighted index. When the median and the first quartile of the month reach the 5% significance level, the critical value is what’s at the high for the weighted index. Whereas when the median and the third quartile of the month reach the 95% significance level, the critical value is where the averaged low weighted index hit.
With regard to what may contribute the VIX, the indication from the regression analysis for hypothesis factors and the best independent variance choice by SAS. The following factors are related to the weighted index, that is the daily trading volume, the independent index figure, the reward from the previous day and the advance or decline of wave band. What concerns the Taiwan Index Future are the spread and daily amplitude. And what concerns the period is season, whereas the reward from the day and the day previous are VIX-linked. The regression model perfectly demonstrate the VIX’s variance of 40.04%.
圖次目錄.....................................III
表次目錄......................................IV
第一章 緒論....................................1
第一節 研究動機與目的.......................1
第二節 研究架構.............................5
第三節 研究內容.............................7
第二章 文獻回顧................................8
第一節 隱含波動率...........................8
第二節 行為財務學及情緒指標................10
第三章 編製波動率指數.........................15
第一節 美國CBOE VIX 編製方法介紹...........15
第二節 法國 VX1, VX6及德國 VDAX編製方法介紹.22
第三節 國內選擇權VIX的編製..................24
第四章 國內選擇權VIX 統計分析..................28
第一節 各種VIX的統計資料描述及分析..........28
第二節 最適VIX的統計資料描述及分析..........36
第三節 VIX在加權指數多種狀況下的相關........47
第四節 影響VIX的因子........................55
第五章 結論....................................63
參考文獻.......................................66
附錄A:不同參數選用下的12種VIX.................69
附錄B:CBOE VIX 期貨合約......................80
中文參考文獻
1.鍾惠民-吳壽山-周賓凰-范懷文(2002),財經計量,台北:雙葉
2.彭昭英-唐麗英(2002),SAS 1-2-3,台北:儒林
3.黃嘉斌(1998),選擇權價格波動率與訂價理論,台北:寰宇
4.寰宇財務顧問公司(2002),股價指數選擇權,台北:寰宇
5.陳威光(2002),衍生性金融商品,台北:智勝
6.郭敏華(2004),行為財務學,台北:智勝
7.郭敏華(2004),投資心理學,台北:培生
8.寰宇財務顧問公司(2001), 期貨市場情緒指標,台北:寰宇
9. 莊益源 (2003),“波動率模型預測能力的比較 – 以台指選擇權為例,”台灣金融財務季刊, 第四輯第二期, 41-64
英文參考文獻
1.Bekaert Geert, Campbell R. Harvey: "Emerging Equity Market olatility" in ournal of Financial Economics 1997. Vol. 43, no. 1, pp. 29-78.
2.Brown, G., & M. Cliff, (1999), “Sentiment and the stock market. manuscript in preparation,” Working Paper, University of North Carolina at Chapel Hill.
3. Brown, G.W., & Cliff, M.T.(2001), “Investor sentiment and the near-term stock market,” Working paper, Purdue University.
4. Clarke, R., and M. Statman, (1998), “Bullish or bearish?” FinancialAnalysts Journal, Vol.54 (3), 63-72.
5.De Long, J. B., A. Shleifer, L. Summers and R. J. Waldmann (1990), “Positive feedback investment strategies and destabilizing rational speculation,” Journal of finance, Vol.45, 275-395
6.Fama, E. F. (1998), “Market efficiency, long-term returns and behavioral finance, “ Journal of Financial Economics, Vol.49, 283-306
7.Fisher, K. L., and M. Statman (2000), “Investor Sentiment and Stock
Returns,” Financial Analysts Journal, Vol.56, No.2 (March/Aprial), 16-23.
8. French K. R.(1980), “Stock Returns and the Weekend Effect,” Journal of financial Econnomics, Vol.8, 55-69
9.Harvey, A., and R.E. Whaley (1991), “S&P 100 Index Option Volatility,” The Journal of Finance, 46, 1551-1561.
10.Harvey Campbell R., “The Cross-Section of Volatility and Autocorrelation in Emerging Markets,” Finanzmarkt und Portfolio Management 1995, pp.12-34
11.Hersh Shefrin and Meir Statman (1984), “The Disposition to Sell Winners Too Early and Ride Losers Too Long:theory and Evidence,” Journal of Finance,Vol.40, 777-790
12.Kahneman, D. and A. Tversky (1979), “Prospect theory: An analysis of decision under risk,” Econometrica, Vol.47, 263-291
13.Kahneman, D. and M. W. Riepe(1998), “Aspects of investor psychology,” Journal of Portfolio Management, 52-65
14.Kahneman, D., P. Slovic and A. Tversky(1982), “Judgement Under Uncertainty: Heuristics and Biases,” New York; Cambridge University Press
15.Lee, W.Y., Jiang, C.X., & Indro, D.C. (2002). “Stock market volatility, excess returns, and the role of investor sentiment,” Journal of Banking and Finance, 26, 2277-2299.
16.Linda Canina and Stephen Figlewski (1993), “The Informational Content of Implied Volatility,” The Review of Financial Studies, Vol.6, No.3 4-12
17.Loomes, G. and R. Sugden (1982), “Regret theory: an alternative theory of rational choice under uncertainty,” The Economic Journal, Vol.92 805-824
18.Louis H. Ederincton(1996), “Is Implied Volatility an Informationally Efficient and Effective Predictor of Future Volatility?”, Working Paper, University of Oklahoma
19.Neal, R., & Wheatley, S.M. (1998), “Do measures of sentiment predict returns? “ Journal of Financial Quantitative Analysis, 33 (4), 523-547.
20.Odean, T. (1998b), “Volume, volatility, price and profit when all traders are above average,” Journal of Finance, Vol.53, 1887-1934
21.Olsen, A. Robert (1998), “Behavioral finance and its implications for
stock-price volatility,” Financial Analysts Journal March/April, 10-18.
22.Phelim P. Boyle and Seokgu Byoun and Hun Y. Park(1998), “Temporal Price Relation Between Stock and Option Markets and a Bias of Implied Bolatility in Option Price”, Working Paper, The Darla Moore School of Business University of South Carolina
23.Sanders D. R., S. H. Irwin, and R. M. Leuthold (1997), “Noise Traders,
Market Sentiment, and Futures Price Behavior,” Working Paper,University of Illinois at Urbana Champaign
24.Shefrin, H. (2000), “Beyond Greed and Fear, Boston,” MA:Harvard Business School Press
25.Shefrin, H. and M. Statman(1984), “Explanining investor preference for cash dividends,” Journal of Financial Economics, Vol. 27, 253-282
26.Sheldon Natenberg (1994), “Optin Volatility and Pricing,” 72-74, 295-299.
27.Simon D., and R. Wiggins (2001), “S&P Futures and Contrary Sentiment
Indicators,” Journal of Futures Market, Vol.21, No.5, 447-462.
28. Solt, M. E. and M. Statman. (1988), “How Useful is the Sentiment Index?”
Financial Analysts Journal, Vol. 44, No. 5 (Sep/Oct): 45-55.
29. Thaler, R. H. (1980), “Toward a positive theory of consumer choice,” Journal of Economic Behavior and Organization, Vol.1, 39-60
30. Wang C. (2001a), “Investor Sentiment and Return Predictability in Agricultural Futures Markets,” The Journal of Futures Markets, Vol.21, No.10, pp. 929-952.
31.Wang C. (2001b), “Investor Sentiment, Market Timing, and Futures
Returns,” Working Paper, National University of Singapore.
32.Whaley R. E., (1993), “Derivatives on Market Volatility: Hedging Tools
Long Overdue,” Journal of Derivatives, 1, 71-84.
33. Whaley R. E. (2000), “The Investor Fear,” Journal of Portfolio
Management, Vol. 26, No. 3, 12-17.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top