|
[1] Armony, M. ; Bambos, N. “Queueing Dynamics and Maximal Throughput Scheduling in Switched Processing Systems”, Technical Report SU NETLAB-2001-09/01, Engineering library, Stanford University.
[2] Bell, S. L. ; Williams, R. J. “Dynamic Scheduling of a System with Two Parallel Servers in Heavy Traffic with Resource Pooling: Asymptotic Optimality of A Threshold Policy”, The Annals of Applied Probability, 2001, Vol. 11, No. 3, pp.608-649.
[3] Dai, J. G. “On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models”, Annals of Applied Probability, Vol. 5, 1995, pp.49-77.
[4] Hajek, B. “Hitting-time and Occupation-time Bounds Implied By Drift Analysis with Applications”, Adv. Appl. Prob. 14, pp.501-525.
[5] Hung, Y. C. “Modeling and Analysis of Stochastic Networks with Shared Resource”, Ph.D. Thesis, The University of Michigan, 2002.
[6] Hung, Y. C. ; Michailidis, G. ; Bingham, D. R. “Developing Efficient Simulation Methodology for Complex Queueing Networks”, Proceedings of the Winder Simulation Conference 2003, New Orleans, pp.152-159.
[7] Kelly, F. P. “Reversibility and Stochastic Networks”, 1979.
[8] Leonaridi, E. ; Mellia, M. ; Neri, F. ; Marsan, M. A. “On the Stability of Input-Queued Switches with Speed-up”, IEEE, Transactions on Networking, 9(1), 2001, pp.104-118.
[9] Mekkittikul, A. ; McKeown, N. “A Starvation-free Algorithm For Achieving 100% Throughput in an Input-Queued Switch”, Proc. of ICCCN’96, October, 1996, pp.226-231.
[10] Meyn, S. P. “Stability and Optimization of Queueing Networks and Their Fluid models”, Proceeding of the Summer Seminar on “The Mathematics of Stochastic Manufacturing Systems”, 1996, pp.17-21.
[11] Pemantle, R. ; Rosenthal, J. S. “Moment conditions for a sequence with negative drift to be uniformly bounded in Lr ”, Stochastic Processes and their Applications 82, 1999, pp.143-155.
[12] Ross , S. “Stochastic Processes” , 2nd edition, Chapter 3, pp.98-104.
[13] Stolyar, A. L. “Control of End-To-End Delay Tails in a Multiclass Network: LWDF Discipline Optimality”, The Annals of Applied Probability, 2003. Vol. 13. No. 3. pp.1151-1206.
[14] Walrand, J. “Introduction to queueing networks”, Englewood Cliffs, Prentice Hall” 1988.
|