跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 04:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙志民
研究生(外文):Chih-Min Chao
論文名稱:在寬頻分碼多工系統下的正交可變展頻係數碼之管理
論文名稱(外文):OVSF Code Channel Management in WCDMA Systems
指導教授:許健平許健平引用關係曾煜棋曾煜棋引用關係
指導教授(外文):Jang-Ping SheuYu-Chee Tseng
學位類別:博士
校院名稱:國立中央大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:中文
論文頁數:94
中文關鍵詞:行動通訊正交可變展頻係數碼個人化通訊服務寬頻分碼多工無線通訊第三代行動通訊
外文關鍵詞:3Gwireless communicationWCDMAmobile computingOVSFpersonal communication services
相關次數:
  • 被引用被引用:1
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
在寬頻分碼多工系統(WCDMA)下,使用正交可變展頻係數碼(OVSF code)可
以選擇不同的傳送速度,因此可以更有彈性的提供使用者不同速度需求的服務。
不過使用正交可變展頻係數碼有一些限制,例如同時使用的碼,彼此必須互相正
交,這個限制就可能會造成碼切斷(code blocking)問題。碼切斷的定義是雖然系
統仍有足夠的頻寬,但因為必須互相正交的限制,造成使用者仍會被拒絕服務,
這種碼切斷的情形也可看成是外部碎裂(external fragmentation)的問題。另外一個
限制是每個碼所提供的速度是呈倍數方式增加,這個限制則會產生內部碎裂
(internal fragmentation)的問題,即系統用過多的資源去滿足使用者的需求。
要解決外部碎裂的問題,其實就是要解決碼的分配及重分配的問題。碼的分
配問題即是討論要如何分配不同的碼給使用者,才能使碼切斷發生的情形能盡量
減少;碼的重分配問題,則是考慮如何才能使重分配的成本(重分配時所引發的
搬移次數)最少。在這兩個問題上,先前的研究,不是沒有考慮正交可變展頻係
數碼樹的結構,就是不能很有效率的使用這些碼。本篇論文即提出數種碼分配及
重分配的方法,如最左優先法(leftmost),最擁擠優先法(crowded-first)等。這些方
法的基本觀念是讓分配後的正交可變展頻係數碼樹盡量緊密,以減少碼切斷的機
率。透過實驗的驗證,我們發現這些方法的確能大幅提高系統的效率。
為解決內部碎裂的問題,我們建議讓使用者的每個連線都能使用一個以上的
碼。文中將說明如何利用多個碼來降低內部碎裂。同時,我們也分析了使用多個
碼的硬體成本與系統效率之問的取捨;分析結果說明使用2 或3 個碼較能符合成
本效益。針對多個碼的分配與重分配,需考慮多個面向,針對各個面向,本論文
亦提出了多種策略。
為了更進一步提高寬頻分碼多工系統的效能,允許一個正交可變展頻係數碼
由多個使用者分時共享是一個很好的觀念。允許不同的使用者分時共享同一個
碼,則必須要有一個排程的演算法,決定『那一個時間分配那一個碼給那一個使
用者』。本論文採用一個使用者可以同時使用多個碼的環境,在此環境下,我們
提出兩個排程演算法,目標是讓每一個使用者都能公平地達到其個別的傳送速度
需求。提出的演算法考慮了多重的連線品質,因此更符合實際的系統運作。在不
同的品質下,這些方法調整每個碼的展頻係數以達使用者的連線速度需求。透過
理論分析與實驗測試,這些方法優越性都得到了驗證。
The use of OVSF codes in the WCDMA system can provide variable data rates to flexibly
support applications with different bandwidth requirements. However, there are some
constraints when using the OVSF codes, such as code blocking and exponentially quantized
data rates. Code blocking, which is defined as the condition that a new call is rejected even
though the system has enough bandwidth, induces external fragmentation of an OVSF code
tree. Exponentially quantized data rates, resulting from the exponentially decreased spreading
factors, induces internal fragmentations for requests. Both external and internal fragmentations
waste the precious wireless bandwidth. In this dissertation, the effects of these
constraints are investigated and several strategies are provided to eliminate such limitations.
Two important issues on such an environment are the code assignment problem and code
reassignment problem. The former may have significant impact on code utilization and thus
code blocking probability, while the latter may affect the code reassignment cost if dynamic
code assignment is to be conducted. The general objective is to make the OVSF code tree
as compact as possible so as to support more new calls by incurring less blocking probability
and less reassignment costs. Earlier studies about these two problems either do not
consider the structure of the OVSF code tree or cannot utilize the OVSF codes efficiently.
Two code assignment and reassignment strategies, leftmost and crowded-first, are proposed
in this dissertation to solve these problems. Simulation results show that the crowded-first
scheme increases the OVSF code tree utilization significantly.
To reduce internal fragmentation, it is suggested to use multiple codes to support a call.We show how using multiple codes can reduce internal fragmentation of a OVSF code tree.
The tradeoff between bandwidth utilization and hardware complexity of a multi-code system
is analyzed. The result shows that using 2 or 3 codes will be quite cost-effective. Several
multi-code assignment and reassignement strategies, namely random, leftmost, crowded-
first-space, and crowded-first-code, are also proposed based on such environment.
In order to further increase the bandwidth utilization, strategies that utilize time-shared
OVSF codes are proposed to enhance statistical multiplexing. In particular, we propose to
allow a user to simultaneously use multiple OVSF codes in a time-sharing manner, which
we call a multi-code, shared model. Using multiple codes allows us to compensate those
users suffering from communication interferences or even errors. The proposed schemes
can tolerate a multi-state link condition (compared to the typically assumed two-state, or
good-or-bad, link condition) by adjusting the spreading factors of OVSF codes. Through
theoretical analyses and computer simulations, the proposed strategies are verified to be
efficient and cost-effective. It is expected that the capacity of WCDMA systems can be
effectively utilized when the strategies proposed in this dissertation are applied.
1 Introduction 1
2 System Model 5
2.1 UMTS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 OVSF Code Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Reducing External Fragmentation by Single Code 9
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Problem Statement and Literature Review . . . . . . . . . . . . . . . . . . 11
3.2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Code Assignment and Reassignment Strategies . . . . . . . . . . . . . . . 14
3.3.1 Assignment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Reassignment Schemes . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Call Blocking Probability . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Bandwidth Utilization . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 Reducing Internal and External Fragmentations by Multiple Codes 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Backgrounds and Motivations . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Internal Fragmentation and External Fragmentation . . . . . . . . . 39
4.3 Reducing Internal Fragmentation by Multiple Codes . . . . . . . . . . . . 40
4.4 Reducing External Fragmentation by Multi-Code Assignment and Reassignment
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.1 Multi-Code Assignment . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.2 Code Reassignment . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5 Increasing System Utilization by Time-Shared OVSF Codes 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Dynamic Bandwidth Allocation Strategies . . . . . . . . . . . . . . . . . . 70
5.3.1 Code Assignment Part . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 Credit Management Part . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.3 Packet Scheduling Part . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6 Conclusions and FutureWorks 87
[1] Third Generation Partnership Project; Technical Specification Group Radio Access
Network. Spreading and Modulation (FDD), http://www.3gpp.org, 1999.
[2] F. Adachi, MSawahashi, and K. Okawa. ”Tree-structured Generation of Orthogonal
Spreading Codes with Different Lengths for Forward Link of DS-CDMA Mobile Radio”.
Electron. Lett., 33:27–28, Jan., 1997.
[3] F. Adachi, M. Sawahashi, and H. Suda. ”Wideband DS-CDMA for Next-Generation
Mobile Communications Systems”. IEEE Commun. Mag., 36:56–69, Sept., 1998.
[4] R. Assarut, K. Kawanishi, U. Yamamoto, Y. Onozato, and Masahiko. ”Region Division
Assignment of Orthogonal Variable-Spreading-Factor Codes inW-CDMA”. IEEE VTC
2001 Fall, pages 1884–1888, 2001.
[5] A. Baier, U.-C. Fiebig, W. Granzow, W. Koch, P. Teder, and J. Thielecke. ”Design
Study for a CDMA-Based Third-Generation Mobile Radio System”. IEEE Journal on
Selected Areas in Communications, 12(4):733–743, May, 1994.
[6] Y. Cao and V. O. Li. ”Scheduling Algorithms in Broad-Band Wireless Networks”.
Proceedings of the IEEE INFOCOM, 89(1):76–87, Jan, 2001.
[7] C.-M. Chao, Y.-C. Tseng, and L.-C. Wang. ”Reducing Internal and External Fragmentations
of OVSF Codes in WCDMA Systems With Multiple Codes”. IEEE WCNC,
pages 693–698, 2003.
[8] W.-T. Chen, Y.-P. Wu, and H.-C. Hsiao. ”A Novel Code Assignment Scheme for WCDMA
Systems”. IEEE VTC 2001 Fall, pages 1182–1186, 2001.
[9] R.-G. Cheng. ”A Code Managemant Mechanism for WCDMA Mobile Communication
Networks”, June, 1999. International Workshop on Mobile Communications.
[10] R.-G. Cheng and P. Lin. ”OVSF Code Channel Assignment for IMT-2000”. IEEE VTC
2000 Spring, 3:2188–2192, May, 2000.
[11] E. Dahlman, B. Gudmundson, M. Nilsson, and J. Skold. ”UMTS/IMT-2000 Based on
Wideband CDMA”. IEEE Commun. Mag., 36:70–80, Sept., 1998.
[12] E. Dahlman and K. Jamal. ”Wide-Band Services in a DS-CDMA Based FPLMTS
System”. IEEE VTC 1996, pages 1656–1660, 1996.
[13] D. Eckhardt and P. Steenkiste. ”Effort-Limited Fair (ELF) Scheduling for Wireless
Networks”. IEEE INFOCOM, pages 1097–1106, 2000.
[14] ETSI TS 125 301. Universal Mobile Telecommunications Systems (UMTS): Radio
Interface Protocol Architecture (3GPP TS 25.301 version 5.1.0 Release 5). June, 2002.
[15] R. Fantacci and S. Nannicini. ”Multiple Access Protocol for Integration of Variable
Bit Rate Multimedia Traffic in UMTS/IMT-2000 Based on Wideband CDMA”. IEEE
Journal on Selected Areas in Communications, 18(8):1441–1454, Aug., 2000.
[16] V. K. Garg. IS-95 CDMA and CDMA2000. N.J.: Prentice Hall, 2000.
[17] J. Gomez, A. T. Campbell, and H. Morikawa. ”The Havana Framework for Supporting
Application and Channel Dependent QoS in Wireless Networks”. ICNP, pages 235–
244, 1999.
[18] O. Gurbuz and H. Owen. ”Dynamic Resource Scheduling for Variable QoS Traffic in
W-CDMA”. Proceedings of the IEEE ICC’99, 2:703–707, June, 1999.
[19] H. Holma and A. Toskala. WCDMA for UMTS. John Wiley & Sons, 2000.
[20] C. L. I and D. Gitlin. ”Multi-code CDMA Wireless Personal Communications Networks”.
Proceedings ICC’95, pages 1060–1064, June 1995.
[21] C.-L. I et al. ”IS-95 Enhancements for Multimedia Services”. Bell Labs. Tech. J., pages
60–87, Autumn, 1996.
[22] J. G. Proakis. Digital Communications. Boston: McGraw-Hill, forth ed., 2001.
[23] M. S. K. Ohno and F. Adachi. ”Wideband Coherent DS-CDMA”. IEEE VTC 1995,
pages 779–783, 1995.
[24] A. Z. Kam, T. Minn, and K.-Y. Siu. ”Supporting Rate Guarantee and Fair Access
for Bursty Data in W-CDMA”. IEEE Journal on Selected Areas in Communications,
19(12):2121–2130, Nov., 2001.
[25] D. Kandlur, K. Shin, and D. Ferrari. ”Real-Time Communication in Multi-Hop Networks”.
ACM SIGCOMM, pages 300–307, 1991.
[26] C.-L. Liu. Introduction to Combinatorial Mathematics. New York: McGraw-Hill,
McGraw-Hill, 1968.
[27] S. Lu and V. Bharghavan. ”Fair Scheduling in Wireless Packet Networks”. IEEE/ACM
Trans. Networking, 7(4):473–489, 1999.
[28] T. Minn and K.-Y. Siu. ”Dynamic Assignment of Orthogonal Variable-Spreading-
Factor Codes in W-CDMA”. IEEE Journal on Selected Areas in Communications,
18(8):1429–1440, Aug., 2000.
[29] T. S. E. Ng, I. Stoica, and H. Zhang. ”Packet Fair Queueing Algorithms for Wireless
Netowrks with Location-Dependent Errors”. INFOCOM, pages 1103–1111, 1998.
[30] K. Pahlavan and A. H. Levesque. Wireless Information Networks. New York: John
Wiley and Sons, 1995.
[31] A. Parekh and R. G. Gallager. ”A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Netowrks: The Single-Node Case”. IEEE/ACM Trans.
Networking, 1:334–357, 1993.
[32] J. G. Proakis. Digital Communications. McGraw-Hill, 1995.
[33] P. Ramanathan and P. Agrawal. ”Adapting Packet Fair Queueing Algorithms to Wireless
Netowrks”. ACM/IEEE MOBICOM, pages 1–9, 1998.
[34] F. Shueh, Z.-E. P. Liu, and W.-S. E. Chen. ”A Fair, Efficient, and Exchangeable Channelization
Code Assignment Scheme for IMT-2000”. IEEE ICPWC 2000, pages 429–
433.
[35] T. S. Rappaport. Wireless Communications: Principles and Practice. N.J.: Prentice
Hall, 1996.
[36] A. S. Tanenbaum. Modern Operating Systems. N.J.: Prentice Hall, 1992.
[37] Y.-C. Tseng and C.-M. Chao. ”Code Placement and Replacement Strategies for Wideband
CDMA OVSF Code Tree Management”. IEEE Trans. on Mobile Computing,
1(4):293–302, Oct.-Dec. 2002.
[38] A. J. Viterbi. CDMA Principles of Spread Spectrum Communications. Addision-
Wesley, 1995.
[39] J. Wang, M. A. Elicin, and J. C. L. Liu. ”Multimedia Support for Wireless W-CDMA
with Dynamic Spreading”. Wireless Network, 8:355–370, July, 2002.
[40] L. Xu, X. Shen, and J.W. Mark. ”Dynamic Bandwidth Allocation with Fair Scheduling
for WCDMA Systems”. IEEE Wireless Communications, 9(2):26–32, April, 2002.
[41] Y. Yang and T.-S. P. Yum. ”Nonrearrangeable Compact Assignment of Orthogonal
Variable-Spreading-Factor Codes for Multi-Rate Traffic”. IEEE VTC 2001 Fall, pages
938–942, 2001.
[42] L. Zhang. ”Virtual Clock: A New Traffic Control Algorithm for Packet Switching
Netowrks”. ACM SIGCOMM, pages 19–29, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top