跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 16:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許智舜
研究生(外文):Chih-Shun Hsu
論文名稱:行動隨意與無線感應器網路上電源管理協定之設計
論文名稱(外文):Design of Power Management Protocols for Mobile Ad Hoc and Sensor Networks
指導教授:許健平許健平引用關係曾煜棋曾煜棋引用關係
指導教授(外文):Jang-Ping SheuYu-Chee Tseng
學位類別:博士
校院名稱:國立中央大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:104
中文關鍵詞:行動隨意網路電源管理省電無線網路無線感應器網路
外文關鍵詞:mobile ad-hoc network(MANET)power managementpower-savingwireless networkwireless sensor network(WSN)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
行動隨意網路(mobile ad hoc network)與無線感應器網路(wireless sensor network)是近來最吸引研究者的兩種無線網路架構。對於所有由電池供電的無線裝置而言,最重要的課題便是省電。電池的電力是有限的資源,因此,如何延長電池的運作時間,對於這兩種完全由電池供電的網路而言,便成了一個重要的議題。雖然,行動隨意網路的省電協定也可套用在規則的無線網路上,但是比起針對規則無線網路設計的省電協定要來得複雜且沒效率。因此,我們也針對規則的無線感應器網路設計了電源管理協定。
讓閒置的無線裝置切換至省電模式是我們主要的省電策略。在行動隨意網路上,現存的的省電協定可分為同步與非同步兩類。同步的省電協定(如IEEE 802.11的省電協定)並不適用於multi-hop的行動隨意網路因為會造成同步、發現鄰居與網路分割的問題。為了解決這些問題,我們針對以IEEE 802.11為基礎的行動隨意網路提出了三種非同步的省電協定:分別為支配性醒來(dominating-awake-interval)、週期性完全醒來(periodically-fully-awake-interval)與以法定人數為基礎 (quorum-based)之協定。設計理念如下:首先我們強迫省電主機傳送更多的信標(beacon),其次,我們很謹慎的安排省電主機的醒來與睡眠模式,使得兩個在睡眠模式且相鄰的主機保證能夠在限定的時間內偵測到彼此的存在。此外,針對我們的省電協定,我們提出了一對一傳送與廣播的通訊協定。模擬結果顯示,當交通量不高時,我們的省電協定可以節省許多的電源。
雖然非同步的解決方案很吸引人,但是相較於同步的省電協定,代價太高了。採用非同步協定的主機必須要醒來比較長的時間,以便發現其他非同步的省電主機。此外,當相鄰的行動主機醒來的時間不同步時,廣播的訊息必須要傳送好幾次才能被所有的鄰居收到。為了克服這個缺點,我們提出了以叢集架構為基礎的半非同步省電協定。基本的理念是將網路分成許多的叢集,在每個叢集內採用同步的省電協定,以便節省更多的電源。針對叢集間的偵測,我們提出了幾項方案:包括以機率、訊雜比與機率、輪流、鄰居覆蓋與位置為基礎的方案。模擬的結果顯示,我們提出的半非同步省電協定表現得比非同步省電協定好很多。
針對規則的無線感應器網路,我們提出新的電源管理協定,其目標是要讓網路維持連通,而又能讓最多的節點關閉無線天線進入省電模式。當偵測到緊急事件發生時,訊息可以藉由醒著的節點傳送至基地台而不必喚醒任何在省電模式的節點。此外,每個感應器節點應該輪流進入省電模式,這樣每個節點消耗的電量才能夠平衡。我們的協定運作方式如下:首先,依據網路拓樸選出好幾組連通的支配集合(connected dominating set),這些連通的支配集合會輪流醒來去服務其他不屬於此集合的省電節點。即使有部分節點損壞,我們的協定仍能運作。分析與模擬的結果顯示,在合理的傳輸延遲下,我們的電源管理協定可以節省許多的電源並延長網路的運作的時間。
Among various types of network architectures, the mobile ad hoc network (MANET) and the wireless sensor network (WSN) are two of the most attractive wireless networks. One critical issue for almost all kinds of wireless devices supported by battery powers is power saving (PS). Without power, any wireless device will become useless. Battery power is a limited resource. Hence, how to lengthen the lifetime of batteries is an important issue, especially for MANETs and WSNs, those are supported by batteries only. The PS protocols design for MANETs can also be applied to irregular WSNs. However, when applied to regular WSNs, these protocols are more complicated and less efficient than the protocols design for regular WSNs. Therefore, besides the PS protocols of MANETs, we also design PS protocols for regular WSNs.
For irregular wireless networks, several novel power saving protocols for multi-hop MANETs are proposed. The PS protocols for MANET can be categorized into synchronous, and asynchronous ones. The synchronous PS protocol (e.g. IEEE 802.11’s PS protocol) can not be applied to a multi-hop MANET, because it will cause three problems: namely clock synchronization, neighbor discovery, and network partitioning. To solve these problems, we propose three asynchronous PS protocols for IEEE 802.11-based multi-hop MANETs, namely dominating-awake-interval, periodically-fully-awake-interval, and quorum-based protocols.
The basic idea is twofold. First, we enforce PS hosts sending more beacon packets than the original IEEE 802.11 standard does. Second and most importantly, we carefully arrange the wake-up and sleep patterns of PS hosts such that any two neighboring hosts are guaranteed to detect each other in finite time even under PS mode. Based on our powersaving protocols, we then show how to perform unicast and broadcast in an environment with PS hosts. Simulation results are presented, which show that our protocols can save lots of power when the traffic load is not high.
Although asynchronous solutions are attractive, yet, the cost is high as opposed to synchronous protocols. Hosts in asynchronous protocols need to keep awake for longer time, so as to discover asynchronous PS neighbors. Besides, a broadcasting message has to be sent multiple times if a sending host’s neighbors wake up asynchronously. To conquer the deficiency of asynchronous PS protocols, we propose several cluster-based semiasynchronous PS protocols for multi-hop MANETs. The basic idea is to cluster neighboring hosts such that synchronous PS protocols can be adopted within each individual clusters, and thus conserves more power. Several schemes are provided in our inter-cluster strategy, including probability-based, SNR-probability-based, round-robin-based, neighbor coverage-based and location-based schemes. Simulation results show that, the proposed
semi-asynchronous approaches outperform the asynchronous PS protocols when applied to a multi-hop MANET.
As for regular wireless networks, since the PS protocols for regular WSNs have not been proposed before, we propose several novel power management protocols for regular WSNs. The goal of our protocols is to let as many sensor nodes as possible switch to PS mode while still maintaining the connectivity of the network so that if any emergency occurs, the sensor node, which senses the event, may transmit this information to the base stations through the active sensor nodes without need to wake up any node in PS mode. Besides, each sensor node should switch to PS mode in turn, so that the power consumption of each node can be balanced. Our protocols work as follows: first, choose several different connected dominating sets according to the network topology and assign an id to each of the connected dominating set, and then the nodes in each connected dominating set will switch to active mode to serve the other hosts in PS mode according to which dominating set they belong to in a round robin manner. Each node can decide which connected dominating set it belongs to according to its own id. In our power management protocols, each sensor node should belong to at least one connected dominating set and most of the sensor nodes should belong to the same number of connected dominating sets so that the power consumption can be balanced. Our protocol can still work properly even there are faulty nodes. Performance analysis shows that the ratios of active nodes of our protocols are near optimal and much lower than those of GAF and SPAN, those are designed for high density irregular networks. Simulation results show that our power management protocols can conserve lots of power and greatly extend the lifetime of the network with a reasonable extra transmission delay.
1 Introduction . . . . . . . . . . .1
2 Reviews of Related Works . . . . . . . . 7
2.1 Power Saving Protocols for Mobile Ad Hoc Networks . . . . . . . . . 7
2.1.1 Power-Saving Modes in IEEE 802.11 . . . . . . . . . . . . . . . 8
2.1.2 Power Management Protocols for Wireless LANs . . . . . . . . . . 10
2.1.3 Power Management Protocols for multi-hop MANETs . . . . . . . . 11
2.2 Power Saving Protocols for Wireless Sensor Networks . . . . . . . 13
2.2.1 Energy-Efficient Communication Protocols for WSNs . . . . . . . 13
2.2.2 Power Management Protocols for WSNs . . . . . . . . . . . . . . 15
3 Power-Saving Protocols for IEEE 802.11-based Multi-hop Ad Hoc Networks . 19
3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Power saving protocols for MANET . . . . . . . . . . . . . . 21
3.2.1 dominating-awake-interval protocol . . . . . . . . . . . . 23
3.2.2 periodically-fully-awake-interval protocol . . . . . . . . . 24
3.2.3 quorum-based protocol . . . . . . . . . . . . . . . . . . . 26
3.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Communication protocols for power-saving hosts . . . . . . . . 29
3.3.1 Unicast . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Impact of Beacon Interval Length . . . . . . . . . . . . . . 33
3.4.2 Impact of Mobility . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Impact of Traffic Load . . . . . . . . . . . . . . . . . . . 39
3.4.4 Impact of Host Density . . . . . . . . . . . . . . . . . . . 39
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4 Cluster-based Semi-Asynchronous Power-Saving Protocols for Multi-hop Ad
Hoc Networks . . . . . 43
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Cluster-based Semi-Asynchronous Power-Saving Protocol . . . . . 45
4.2.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Clustering and Synchronization . . . . . . . . . . . . . . . . 48
4.2.3 Power Mode Scheduling . . . . . . . . . . . . . . . . . . . . 50
4.2.4 Cluster maintenance . . . . . . . . . . . . . . . . . . . . . 54
4.3 Routing Protocols for the Proposed Power-Saving Protocol . . . . 55
4.4 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Impact of Mobility . . . . . . . . . . . . . . . . . . . . . . 60
4.4.2 Impact of Traffic Load . . . . . . . . . . . . . . . . . . . . 62
4.4.3 Impact of Beacon Interval Length . . . . . . . . . . . . . . . 64
4.4.4 Impact of Host Density . . . . . . . . . . . . . . . . . . . . 66
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5 Power Management Protocols for Regular Wireless Sensor Networks 71
5.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Power management protocol . . . . . . . . . . . . . . . . . . . 75
5.2.1 Power mode switch . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 2D Mesh with 4 Neighbors . . . . . . . . . . . . . . . . . . . 76
5.2.3 2D Mesh with 8 Neighbors . . . . . . . . . . . . . . . . . . . 79
5.2.4 2D Mesh with 3 Neighbors . . . . . . . . . . . . . . . . . . . 82
5.2.5 3D Mesh with 6 Neighbors . . . . . . . . . . . . . . . . . . . 83
5.2.6 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6 Conclusions and FutureWork . . . . . . . . . . . . . . . . 95
[1] D. Agrawal and A. E. Abbadi. An Efficient and Fault-Tolerance Algorithm for Distributed Multual Exclusion. ACM Transactions on Computer Systems, 9:1–20, Feb
1991.
[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks. IEEE Communications Magazine, pages 102–114, 2002.
[3] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks. Proceedings of International Conference on Mobile Computing and Networking, pages 85–96, 2001.
[4] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. Wireless Networks, 8:281–294, 2002.
[5] C. F. Chiasserini and R. R. Rao. A Distributed Power Management Policy for Wireless Ad Hoc Networks. Proceedings of IEEE Wireless Communication and Networking Conference, pages 1209–1213, 2000.
[6] H. Dai and R. Han. A node-centric load balancing algorithm for wireless sensor networks. Proceedings of IEEE Global Telecommunications Conference, pages 548–552, 2003.
[7] T. Dam and K. Langendoen. An adaptive energy-efficient mac protocol for wireless sensor networks. Proceedings of International Conference on Embedded Networked Sensor Systems, pages 171–180, 2003.
[8] J. Elson, L. Girod, and D. Estrin. Fine-grain network synchronization using reference broadcasts. Proceedings of symposium on Operating System Design and Implementation, 2002.
[9] L. M. Feeney and M. Nilsson. Investigating the Energy Consumption of Wireless Network Interface in an Ad Hoc Networking Environment. Proceedings of IEEE INFOCOM, pages 1548–1557, 2001.
[10] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor networks. Proceedings of International Conference on Embedded Networked Sensor Systems, 2003.
[11] H. Garcia-Molina and D. Barbara. How to Assign Votes in a Distributed Systems. Journal of the ACM, 32:841–860, Oct 1985.
[12] J. Gomez, A. T. Campbell,M. Naghshineh, and C. Bisdikian. A Distributed Contention Control Mechanism for Power Saving in random-access Ad-Hoc Wireless Local Area Networks. Proceedings of IEEE International Workshop on Mobile Multimedia Communications, pages 114–123, 1999.
[13] G. Gupta and M. Younis. Load-balanced clustering of wireless sensor networks. Proceedings of IEEE International Conference on Communications, pages 1484–1852, 2003.
[14] J. C. Haartsen. The Bluetooth Radio System. IEEE Persinal Communications, pages 28–36, Feb 2000.
[15] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information dissemination in wireless sensor networks. Proceedings of International Conference on Mobile Computing and Networking, 1999.
[16] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication protocol for wireless microsensor networks. Proceedings of Hawaii International Conference, pages 3005–3014, 2000.
[17] P. Hsiao, A. Hwang, H. T. Kung, and D. Vlah. Load-balancing routing for wireless access networks. Proceedings of IEEE INFOCOM, pages 986–995, 2001.
[18] C.-S. Hsu, J.-P. Sheu, and Y.-J. Chang. Efficient broadcasting protocols for regular wireless sensor networks. Proceedings of International Conference on Parallel Processing, pages 393–399, 2003.
[19] L. Hu. Topology Control for Multihop Packet Radio Networks. IEEE Transactions on Communications, 41:1474–1481, Oct 1993.
[20] C. F. Huang, Y. C. Tseng, S. L. Wu, and J. P. Sheu. Increasing the Throughput of Multihop Packet Radio Networks with Power Adjustment. Proceedings of International Conference on Computer, Cummunication, and Networks, 2001.
[21] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and robust communication paradigm for sensor networks. Proceedings of International Conference on Mobile Computing and Networking, 2000.
[22] J.-R. Jiang, Y.-C. Tseng, C.-S. Hsu, and T.-H. Lai. Quorum-based asynchronous powersaving protocols for ieee 802.11 ad hoc networks. Proceedings of International Conference on Parallel Processing, 2003.
[23] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless networks. Mobile Computing, pages 153–181, 1996.
[24] E.-S. Jung and N. H. Vaidya. An energy efficient mac protocol for wireless lans. Proceedings of IEEE INFOCOM, pages 1756–1764, 2002.
[25] A. Kumar. Hierarchical Quorum Consensus: A New Algorithm for Managing Replicated Data. IEEE Transactions on Computers, 40:996–1004, Sep 1991.
[26] Y. C. Kuo and S. T. Huang. A Geometric Approach for Constructing Coteries and k-Coteries. IEEE Transactions on Parallel and Distributed Systems, 8:402–411, Apr 1997.
[27] LAN MAN Standards Committee of the IEEE Computer Society. IEEE Std 802.11-
1999, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. IEEE, 1999.
[28] S. Lindsey and C. S. Raghavendra. Pegasis: Power efficient gathering in sensor information systems. Proceedings of IEEE Aerospace Conference, 2002.
[29] M. Liu and M. T. Liu. A power-saving scheduling for ieee 802.11 mobile ad hoc network. Proceedings of International Conference on Computer Networks and Mobile Computing, pages 1–8, 2003.
[30] J. R. Lorch and A. J. Smith. Software Strategies for Portable Computer Energy Management. IEEE Personal Communications, pages 60–73, Jun 1998.
[31] A. Manjeshwar and D. P. Agrawal. Teen: A routing protocol for enhanced efficiency in wireless sensor networks. Proceesings of International Parallel and Distributed Processing Symposium, pages 2000–2015, 2001.
[32] Nokia. Wireless Broadband Access–Nokia Rooftop Solution. Nokia Network References, http://www.wbs.nokia.com/solution/index.html, 2001.
[33] G. Pei and C. Chien. Low power tdma in large wireless sensor networks. Proceedings of Military Communications Conference, 1:347–351, 2001.
[34] C. E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector routing. Proceedings of of IEEE Workshop on Mobile Computing Systems and Applications, pages 90–100, 1999.
[35] G. Pottie. Wireless sensor networks. Proceedings of Information Theory Workshop, pages 139–140, 1998.
[36] V. Rajendran, K. Obraczka, and J. Garcia-Luna-Aceves. Energy-efficient, collisionfree medium access control for wireless sensor networks. Proceedings of International Conference on Embedded Networked Sensor Systems, pages 181–192, 2003.
[37] R. Ramanathan and R. Rosales-Hain. Topology Control of Multihop Wireless Networks using Transmit Power Adjustment. Proceedings of IEEE INFOCOM, pages
404–413, 2000.
[38] J. H. Ryu and D. H. Cho. A New Routing Scheme Concerning Power-Saving in Mobile Ad-Hoc Networks. Proceedings of IEEE International Conference on Communications, 3:1719–1722, 2000.
[39] J. H. Ryu, S. Song, and D. H. Cho. A Power-Saving Multicast Routing Scheme in 2-tir Hierarchical Mobile Ad-Hoc Networks. Proceedings of IEEE Vehicular Technology Conference, 4:1974–1978, 2000.
[40] A. Salhieh, J. Weinmann, M. Kochha, and L. Schwiebert. Power efficient topologies for wireless sensor networks. Proceedings of International Conference on Parallel Processing, pages 156–163, 2001.
[41] A. K. Salkintzis and C. Chamzas. An In-Band Power-Saving Protocol for Mobile Data Networks. IEEE Transactions on Communications, 46:1194–1205, Sep 1998.
[42] A. K. Salkintzis and C. Chamzas. Performance Analysis of a Downlink MAC Protocol with Power-Saving Support. IEEE Transactions on Vehicular Technology, 49:1029-1040, May 2000.
[43] C. Schurgers and M. B. Srivastava. Energy efficeient routing in wireless sensor networks. Proceedings of Military Communications Conference, 1:357–361, 2001.
[44] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava. Topology management for sensor networks: Exploiting latency and density. Proceedings of ACM international Symposium on Mobile Ad Hoc Networking and Computing, pages 135–145, 2002.
[45] L. Schwiebert, S. K. S. Gupta, and J. Weinmann. Research challenges in wireless networks of biomedical sensors. Proceedings of International Conference on Mobile Computing and Networking, pages 151–165, 2001.
[46] T. Simunic, H. Vikalo, P. Glynn, and G. D.Micheli. Energy Efficient Design of Portable Wireless Systems. Proceedings of International Symposium on Low Power Electronics and Design, pages 49–54, 2000.
[47] S. Singh and C. S. Raghavendra. Power Efficient MAC Protocol for Multihop Radio Networks. Proceedings of IEEE International Personal, Indoor and Mobile Radio Communications Conference, pages 153–157, 1998.
[48] S. Singh, M. Woo, and C. S. Raghavendra. Power-Aware Routing in Mobile Ad Hoc Networks. Proceedings of International Conference on Mobile Computing and Networking, pages 181–190, 1998.
[49] S. Slijepcevic and M. Potkonjak. Power-efficient organization of wireless sensor networks. Proceedings of IEEE International Conference on Communications, pages 472–476, 2001.
[50] I. Stojmenovic and X. Lin. Power-aware Localized Routing in Wireless Networks. Proceedings of IEEE International Parallel and Distributed Processing Symposium, pages 371–376, 2000.
[51] D. Tian and N. D. Georganas. A coverage-preserving node scheduling scheme for large wireless sensor networks. Proceedings of ACM International Conference on Wireless Sensor Networks and Applications, pages 32–41, 2002.
[52] Y.-C. Tseng and T.-Y. Hsieh. Fully power-aware and location-aware protocols for wireless multi-hop ad hoc networks. Proceedings of IEEE ICCCN, pages 608–613, 2002.
[53] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh. Power-Saving Protocols for IEEE 802.11-BasedMulti-Hop Ad Hoc Networks. Proceedings of IEEE INFOCOM, pages 200–209, 2002.
[54] C. Ulmer, S. Yalamanchili, and L. Alkalai. Wireless distributed sensor networks for in-situ exploration mars. NASA Jet Propulsion Laboratory’s Technical Report, 2001.
[55] R. Wattenhofer, L. Li, P. Bahl, and Y. M. Wang. Distributed Topology Control for Power Efficient Operation in Multihop Wireless Ad Hoc Networks. Proceedings of IEEE INFOCOM, pages 1388–1397, 2001.
[56] H. Woesner, J. P. Ebert, M. Schlager, and A. Wolisz. Power-Saving Mechanisms in Emerging Standards for Wireless LANs: The MAC Level Perspective. IEEE Persinal Communications, pages 40–48, Jun 1998.
[57] S. L. Wu, Y. C. Tseng, and J. P. Sheu. Intelligent Medium Access for Mobile Ad Hoc Networks with BusyTones and Power Control. IEEE Journal on Selected Areas in Communications, 18:1647–1657, Sep 2000.
[58] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed Energy Conservation for Ad Hoc Routing. Proceedings of International Conference on Mobile Computing and Networking, pages 70–84, 2001.
[59] T. Yan, T. He, and J. A. Stankovic. Differentiated surveillance for sensor networks. Proceedings of International Conference on Embedded Networked Sensor Systems, pages 51–62, 2003.
[60] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for wireless sensor networks. Proceedings of IEEE INFOCOM, pages 1567–1576, 2002.
[61] J. Zhang and H. Shi. Energy-efficient routing for 2d grid wireless sensor networks. Proceedings of International Conference on Information Technology: Research and Education, pages 311–315, 2003.
[62] R. Zheng, J. C. Hou, and L. Sha. Asynchronous Wakeup for Ad Hoc Networks. Proceedings of ACM international Symposium on Mobile Ad Hoc Networking and Computing, pages 35–45, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 大眾醫學社(1979)。婚姻衝突的基本因素。大眾醫學,29(6),254-255。
2. 孔祥明(1999)。婆媳過招為哪樁?:婆婆、媳婦與兒子(丈夫)三角關係的探討。應用心理研究,4,57-96。
3. 王叢桂(1994)。雙生涯家庭中個人工作價值與家庭價值的變遷調適。社區發展季刊,68,51-52。
4. 田秀蘭(1997)。雙生涯家庭與女性的生涯發展。諮商與輔導,144,7-11。
5. 伊慶春、楊文山、蔡瑤玲(1992)。夫妻衝突處理模式的影響因素:丈夫、妻子、和夫妻配對樣本的比較。中國社會學刊,16,25-54。
6. 吳明燁、伊慶春(2003)。婚姻不只是婚姻:家庭因素對於婚姻滿意度的影響。人口學刊,26,71-95。
7. 呂勝瑛(1985)。工作壓力的實證研究。教育與心理研究,8,157-190。
8. 李良哲(1996)。大台北地區已婚者婚姻衝突因應行為之年齡與性別差異研究。教育與心理研究,19,169-196。
9. 沙依仁(1989)。現代我國職業婦女的育幼問題。今日生活,273,18-21。
10. 俞筱鈞((1987)。台北市高成就職業婦女之心理壓力與適應研究之初探。中華心理衛生學刊,3(2),137-154。
11. 唐先梅(1999)。從家務工作的本質談雙薪家庭夫妻家事分工。應用心理研究,4,131-173。
12. 高淑貴(1982)。變遷社會中母子關係調適之研究:職業婦女與家庭主婦之比較。農業推廣學報,6,141-192。
13. 張思嘉(2001)。婚姻早期的適應過程:新婚夫妻的質性研究。本土心理學研究,16,91-33。
14. 張耐(1995)。雙生涯家庭之需求。社會福利,117,18-21。
15. 陸洛(1997)。工作壓力之歷程:理論與研究的對話。中華心理衛生學刊,4(10),20-51。