跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張朝旭
研究生(外文):Chao-Hsu Chang
論文名稱:寬頻衛星網際網路動態尋徑策略之研究
論文名稱(外文):Dynamic Routing Strategies for Broadband Satellite-Terrestrial Networks
指導教授:吳曉光吳曉光引用關係
指導教授(外文):Hsiao-Kuang Wu
學位類別:博士
校院名稱:國立中央大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:117
中文關鍵詞:衛星網際網路尋徑策略服務品質保證可靠性群播異質性網路整合
外文關鍵詞:Reliable MulticastSatellite-Terrestrial NetworkroutingQoS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:1
論文名稱:寬頻衛星網際網路動態尋徑策略之研究
頁數:117頁
畢業時間及提要別:九十二學年度第二學期博士論文提要
研究生:張朝旭 指導教授:吳曉光 博士
論文提要內容:

隨著網際網路的蓬勃發展,使得網路的使用人數不斷的提升,各種異質性的網路,如:無線網路(Wireless Lan)、電信網路(Telecommunication)與衛星網路(Satellite Network),不斷的推陳出新,無非是希望能夠提供各種平台的使用者都能夠存取網際網路。再加上多媒體資訊(Multimedia)的普及群播技術(Multicast)的廣泛使用,更為現今的網際網路帶來的龐大的資訊流量,所造成的問題,無非是網路壅塞的情況愈來愈嚴重。尤其是不可預期的短暫性的區域性嚴重網路阻塞,此情況可能使得網際網路暫時被隔絕成兩個獨立的網路,造成緊急的資訊傳遞(Emergent Delivery)無法達成,對於新的服務所需要的網路服務品質(Quality of Service)亦無法被保証,進而使得整個網路的使用效率下降。因此,許多研究不斷的朝向將目前既有寬頻網路技術,如:衛星網路,整合至目前的網際網路中,希望能提供網際網路備源的頻寬,以及資料傳遞的替代路徑。

所以,本論文最主要的目標為提出一以IP (Internet Protocol) 為基礎的整合式衛星網際網路之環境平台,並於此平台完成所需的動態尋徑策略,使衛星網路與網際網路的骨幹網路整合(Backbone Integration)得以完成,並實現傳輸的透明化 (Transparency)。本論文主要可分為兩部分:一、整合式的衛星網際網路平台(Satellite-Terrestrial Networks)。此部分主要是針對異質性網路之間的資源管理(Resource Management)、傳輸時的尋徑策略、以及如何提供點對點具服務品質保証的傳輸。因此我們提出了一動態尋徑的傳輸通訊協定 : Smart Hierarchical Routing Protocol (SHRP) ,以及一具品質保証的傳輸協定 : Spoofing RSVP Protocol (SRP)。 二、可靠性群播技術(Reliable Multicast) 。此部份希望能夠利用衛星網路傳先天的廣播能力(Broadcast),來完成群播的功能,並針對衛星無線傳輸的不可靠性,提供可靠的群播能力。因此我們提出了一群播的通訊協定 : Adaptive Multicast Routing Protocol (AMRST) ,以及一可靠的群播通訊協定: Spoofing Re-configurable Reliable Multicast Routing Protocol (SReRM)。經實驗証明,這些協定在此平台上確實展現了極佳的效能。

關鍵字︰衛星網際網路、異質性網路整合、尋徑策略、服務品質保證、可靠性群播
The rapid proliferation of Internet over recent years has extremely impacted the service offering. Issues of limited capacity, non-global coverage, routing and congestion challenged the availability of desired services. Particularly, burst and tremendous mass of multimedia traffic might unexpectedly congest the terrestrial network to restrict the provisions of services with desired Quality of Services (QoS). The resource utilization is then degraded. Furthermore, this unexpected congestion together with limited network bandwidth would severely challenge the provision of multicasting services that most applications adopt such as video conferencing and distance learning, especially in the case that the multicast subscribers are widely scattered. These issues have roused the research community’s interest in the integration of new satellite technologies with terrestrial multimedia networks. The satellite inherent distance insensitive network could extend the terrestrial capacity and achieve the global coverage. In addition, the terrestrial burst traffic could further detour the congestion areas by delivered to destinations over satellite networks. The unexpected congestion is then managed and the resource utilization is promoted as well. Therefore, in this dissertation, we introduce a global Satellite-Terrestrial network (ST network) configuration that integrates the broadband satellite network with the conventional terrestrial network by gateway points. Based on this platform, a resource-aware routing scheme, the Smart Hierarchical Routing Protocol (SHRP), is proposed to provide connections that detours the congestion areas. These congestion-avoided routing paths are provided for the emergent delivery or the alternatives once the terrestrial routes fail (fault tolerance). A novel proposed Spoofing RSVP Protocol (SRP) is further applied to guarantee the end-to-end QoS. In addition, in order to provide the multicast services, an Adaptive Multicast Routing (AMRST) protocol was proposed. Besides, a Spoofing Re-configurable Reliable Multicast Routing Protocol (SReRM) was further proposed to provide congestion-avoided reliable multicast services. The experimental results validate that these protocols provide excellent throughput, scalability and flexibility to this convergent network.
Contents
Abstract……………………………………………...………….……...…….….…I
Contents…………………………………………...………………….……….…..II
List of Figures IV
List of Tables VI
Chapter 1 Introduction 1
1.1 An Introduction to the Integration of the Heterogeneous Networks 1
1.2 The Necessity of Integrating Satellite Networks into Terrestrial Networks 2
1.3 The Satellite Terrestrial Networks (ST Networks) 4
1.4 Motivation and Research Goals 4
1.5 Problem Issues and Research Approaches 6
1.5.1 Problem Issues and Approaches for Resource Management in the ST Networks 6
1.5.2 Problem Issues and Approaches for Routing in the ST Networks 7
1.5.3 Problem Issues and Approaches for Multicasting in the ST Networks 8
1.5.4 Problem Issues and Approaches for Reliable Multicasting in the ST Networks 10
1.6 Organization of This Dissertation 11
Chapter 2 The Proposed Resource-aware Satellite-Terrestrial Network 14
2.1 The Configuration of the Proposed Satellite-Terrestrial Network (The ST Network) 14
2.2 The System Architecture 17
2.3 The Cluster-based Resource Management 18
2.3.1 Cluster Establishment 18
2.3.2 The Routing Exchange 19
2.3.3 Example of the Routing Exchange 22
2.4 A Resource-aware Routing Protocol 26
2.4.1 The Smart Hierarchical Routing Protocol 26
2.4.2 The Routing Decision Model 29
2.5 The Spoofing RSVP in the ST Network 31
2.5.1 The Guarantee of End-to-End Quality of Service 31
2.5.2 The Spoofing RSVP 31
2.5.3 The Satellite Channel Management 34
2.6 Simulation Results 39
2.7 Summary 47


Chapter 3 Multicasting in the ST Network 49
3.1 Introduction 49
3.2 Related Work 51
3.3 Adaptive Multicast Routing Protocol for Satellite-Terrestrial Network (AMRST) 53
3.3.1 The Configuration of the Cell-based Satellite-Terrestrial Network 54
3.3.2 A Model for the Satellite-Terrestrial Network 55
3.3.3 Virtual Hierarchical Routing Tree (VHRT) 58
3.3.4 Evaluation of the Multicast Routing Cost 61
3.3.5 The Routing Determination of Multicasting 65
3.3.6 Hierarchical Membership Maintenance 70
3.4 The Scalability and Stability for AMRST 73
3.5 Simulation Model and Results 75
3.5.1 Simulation Model 75
3.5.2 Simulation Results 77
3.6 Summary 85
Chapter 4 Reliable Multicasting in the ST Networks 87
4.1 Introduction 87
4.2 Related Work 88
4.3 The Spoofing Re-Configurable Reliable Multicast Routing Protocol (SReRM) 90
4.4 Simulation Model and Results 97
4.4.1 Simulation Model 97
4.4.2 Simulation Results 100
4.5 Summary 108
Chapter 5 Conclusions and Future Work 109
References 112
Appendix 115
Appendix I The Routing Algorithm for VSAT Gateway………………………..…….115
Appendix II The Algorithm of Building Virtual Hierarchical Routing Tree (VHRT)....115
Appendix III The Algorithm of the AMRST……………………………………………116
Appendix IV The Scalable Hierarchical Membership Maintenance (SHMM)………….116
[1]M. Dinis and J. Fernandes, “Provision of Sufficient Transmission Capacity for Broadband Mobile Multimedia : a Step Toward 4G”, IEEE Communication Magazine, pp. 46-55, Aug. 2001.
[2]P. Chilre and F. Yegenoglu, "Next-Generation Satellite Networks: Architecture and Implementations," IEEE Commun. Mag., vol. 37, no. 3, pp. 30-37, Mar. 1999.
[3]F. Akyildiz and S. Jeang, "Satellite ATM Networks: A Survey," IEEE Commun. Mag. vol. 35, no. 7, pp. 30-43 , Jul. 1997.
[4]F. Yegenoglu et al., " An IP Transport and Routing Architecture for Next-Generation Satellite Networks," IEEE Commun. Mag., pp. 32-38 , Oct. 2000.
[5]H. Izumiyama and H. Kusumoto, “Multicast over Satellite”, IEEE Proceedings of the 2002 Symposium on Applications and the Internet (SAINT’02), pp.16-19, Feb. 2002.
[6]T. Inukai, "Ka-Band Satellite Communication Systems Proposed by U.S. Corporations," ESA DSP Wksp., 1996.
[7]F. Gargione et al., "Services Technoloyies, and Systems at Ka Band and Beyond-A Survey," IEEE JSAC, vol.17, no. 2, pp. 133-144, Feb. 1999.
[8]T.V.J.G. Babu, L. Tho and J.F. Hayes, “Performance analysis of on-board switching in broadband satellite communication systems”, ICC '96, pp. 1487 –1491, vol. 3 , Jun. 1996.
[9]L. Yingjie, N.J. Feuerstein and D.O. Reudink, “Performance evaluation of a cellular base station multibeam antenna”, IEEE Transactions on Vehicular Technology, pp. 1 –9, vol. 46, Feb. 1997.
[10]Y. Hu and V. O. K. Li, “Satellite-Based Internet ”, IEEE Communication Magazine, pp. 154-163, Mar. 2001.
[11] H. K. Choi, O. Qadan, D. Sala, J.O. Limb and J. Meyers, "Interactive Web service via satellite to the home", IEEE Communications Magazine, vol. 39, Issue 3, pp. 182-190, Mar. 2001.
[12]S.S. Al-Wakeel and M.M. Al-Wakeel, “An architecture design of a VSAT satellite network for multimedia on demand services”, IEEE Wireless Communications and Networking Conference, WCNC’00, vol. 2, pp.809-812, Sep. 2000.
[13] C. H. Chang, H. K. Wu, M. H. Jin and Y. O. Tseng,"Intelligent Routing for Global Broadband Satellite Internet", Proceedings of Europe HPCN’99, pp. 80-89, Apr. 1999.
[14] C. H. Chang, H. K. Wu and Y. O. Tseng, " Quality of service support for broadband satellite multimedia service", Proceedings of IEEE WCNC'99, New Orlean, vol. 1, pp. 187-191, Sep. 1999.
[15]T. Baba, H. Izumiyama and S. Yamaguchi, “AI3 Satellite Internet Infrastructure and Deployment in Asia”, IEICE, vol. e84-b, no. 8, pp.2048-2057, Aug. 2001.
[16] H. Izumiyama, J. Takei, S. Fujieda, M. Nishida and J. Murai, “A Link-Layer Tunneling Mechanism for Uni-directional Links”,IEICE, vol. E84-b, no.8, pp.2058-2065, Aug. 2001.
[17]E.G. Cuevas,” The development of performance and availability standards for satellite ATM networks”, IEEE Communications Magazine, vol. 377, pp. 74 –79, Jul. 1999.
[18]NASA Lewis Research Center, Home Page, http://www.lerc.nasa.gov/LeRC_homapage.html, Dec. 1998.
[19]C. Toh and V.O.K.Li,”Satellite ATM Network Architectures: an overview”, IEEE Network, vol. 12, no.5, pp61-67, Sept./Oct. 1997.
[20]NASA System Handbook," Advanced Communications Technology Satellite ", NASA, Cleveland, 1995.
[21]A. Iera and A. Molinaro and S. Marano, "IP with QoS guarantees via Geo satellite channels: performance issues", IEEE Personal Communications , vol. 8, pp. 14-19, Jun. 2001.
[22]A. Iera and A. Molinaro,"Designing the interworking of terrestrial and satellite IP-based networks", IEEE Communications Magazine, pp. 136-144, Feb. 2002.
[23]W. Stallings,“High-Speed Networks: TCP/IP and ATM Design Princples”, Prentice-Hall International, Inc, pp. 383-468, 1997.
[24]H. Lin and S. Lai, “VTDM - a dynamic multicast routing algorithm”, IEEE INFOCOM’98, pp. 1426-1432, March-April 1998.
[25]P. Winter, “Steiner Problems In Networks: A Survey”, Networks, Vol.17, pp.129-167, 1987.
[26]K. Bharath-Kumar and J. M. Jaffie, ”Routing to Multiple Destinations in Computer Networks”, IEEE Transactions on Communications, vol. 31, Issue 3, pp.343-351, Mar.1983.
[27]L. Kou, G. Markowsky, and L.Berman, “A Fast Algorithm for Steiner Trees”, Acta Informatica, vol. 15, pp. 141-145, 1981.
[28]H. Mehlhorn, “ A Faster Approximation Algorithm for the Steiner Problems in Graphs”, Inform. Process. Lett., vol.27, no. 3, pp.125-138, 1988.
[29]B. M. Waxman, “Routing of Multiple Connections”, IEEE JSAC, vol. 6, no. 9, pp. 1617-1622, Dec. 1988.
[30]M. IMASE and B. M. Waxman, “Dynamic Steiner Tree Problem”, SIAM J. Disc, Math. Vol. 4, no. 3, pp.369-384, Aug. 1991.
[31]J. Kadirire, “Minimizing Packet Copies in Multicast Routing by Exploiting Geographic Spread”, ACMSIGCOMM Computer Communication Review, vol. 24, pp. 47-63, 1994.
[32]J. M. S. Doar, “Multicasting in The Asynchronous Transfer Mode Environment”, Computer Laboratory Technical Report, no. 298, University Cambridge, 1993. (Ph. D. dissertation)
[33]A. Ballardie, Core Based Tree (CBT) Multicast Routing Architecture, RFC 2201, September 1997.
[34]S. Deering, et. al., Protocol Independent Multicast Version 2, Dense Mode Specification, work in progress.
[35]D. Estrin, et. al., “Protocol Independent Multicast- Sparse Mode (PIM-SM): Protocol Specification”, RFC 2117, Jun. 1997.
[36]T. Pusateri, Distance Vector Multicast Routing Protocol, work in progress.
[37]J. C. Lin and P. Sanjoy, “RMTP: A Reliable Multicast Transport Protocol”, in Proceeding of IEEE Infocom’96, San Francisco, CA., pp. 1414-1424, Mar. 1996.
[38]BONes DESIGNER handbook. Alta Group of Cadence Design Systems, Inc.,Mar. 1996.
[39]R.C. Prim, ”Shortest Connection Networks and Some generalizations”, Bell Syst. Tech. J. 36, pp.1389-1401, 1957.
[40] C. H. Chang and H. K. Wu, "AMRST: Adaptive Multicast Routing for Satellite-Terrestrial Network", The International Journal of Computer and Telecommunications Networking, Computer Networks, Volume 43, Issue 6, pp.713-734, Dec. 2003.
[41]D. Hutchison, A. Mauthe and N. Yeadon, ”Quality-of-service architecture: Monitoring and control of multimedia communications “, Electronics & Communication Engineering Journal, pp. 100 –106, vol. 3, Jun. 1997
[42]T. ASAKA, et. al., “ Multicast Routing in Satellite- Terrestrial Networks”, IEEE APCC '99, pp. 768-771, vol. 1, Oct. 1999
[43]F. Filali and W. Dabbous, “Issues on the IP multicast service behaviour over the next-generation satellite-terrestrial hybrid networks”, Sixth IEEE Symposium on Computers and Communications, pp.417 – 424, Jul. 2001.
[44]T. Yamashita, M. Inoue and Y. Nishi, “Satellite mobile packet system characteristics and performance evaluation”, Vehicular Technology Conference, vol.4, pp. 2950 – 2954, May 2001.
[45]W. D. Ivancic, et. al, ”NASA's broadband satellite networking research”, IEEE Communication Magazine, pp. 40-47, Jul. 1999.
[46]D. Ghost, V. Sarangan and R. Acharya, “Quality-of-service routing in IP networks”, IEEE Transactions on Multimedia, vol. 3, no. 2, pp.200-208, Jun. 2001.
[47]T.H.Cormen, “Introduction to Algorithms”, The MIT Press, pp. 527-540.
[48]E. Lutz, D. Cygan, M. Dippold, F. Dolainsky and W. Rapke, "The Land Mobile Communication Channel-Recording, Statistics, and Channel Model", IEEE Trans. on Vehicular Technology, vol. 40, no. 2, pp.375-386, May 1991.
[49]S. Cho," Adaptive Error Control for Hybrid Satellite-Terrestrial Networks", IEEE WCNC, vol. 2, pp.1013-1017, Sep. 1999.
[50]B. Vucetic, "An Adaptive Coding Scheme for Time-Varying Channels", IEEE Trans. on Comm., vol. 39, no. 5, pp.653-663, May 1991
[51]J. G. Proakis, "Digital Communication", McGraw-Hill Inc.,1995
[52]J. Kadirire and G. Knight, “Comparison of Dynamic Multicast Routing Algorithm for Wide-Area Packet Switched (ATM) Networks ”, IEEE INFOCOM’95, pp.212-219, 1995.
[53]H. Tode, et. al., “Multicast Routing Algorithm for Nodal Load Balancing”, IEEE INFOCOM’92, pp.2086-2095, 1992.
[54]S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang, “A Reliable Multicast Framework for Light-weight Sessions and Application Level Framing”, in Proceeding of ACM SIGCOMM’95, Aug. 1995, pp.342-356, 1995.
[55]T. Speakman, D. Farinacci, S. Lin, and A. Tweedly, “Pragmatic General Multicast (PGM) Reliable Transport Protocol ”, CISCO System, 1998, Internet Draft.
[56]K. Wang, B. Tian and K. Yi, "A practical scheme of improving the link performance for ATM satellite communication networks", 17th International Conference on Advanced Information Networking and Applications, pp. 472 - 475, Mar. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top