|
1.Heger, A. and L. Holm, Rapid automatic detection and alignment of repeats in protein sequences. Proteins, 2000. 41(2): p. 224-37. 2.Kajava, A.V., Review: proteins with repeated sequence--structural prediction and modeling. J Struct Biol, 2001. 134(2-3): p. 132-44. 3.Andrade, M.A., et al., Homology-based method for identification of protein repeats using statistical significance estimates. J Mol Biol, 2000. 298(3): p. 521-37. 4.Andrade, M.A., C. Perez-Iratxeta, and C.P. Ponting, Protein repeats: structures, functions, and evolution. J Struct Biol, 2001. 134(2-3): p. 117-31. 5.Kohl, A., et al., Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc Natl Acad Sci U S A, 2003. 100(4): p. 1700-5. 6.Walker, R.G., A.T. Willingham, and C.S. Zuker, A Drosophila mechanosensory transduction channel. Science, 2000. 287(5461): p. 2229-34. 7.Sedgwick, S.G. and S.J. Smerdon, The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci, 1999. 24(8): p. 311-6. 8.Bateman, A., et al., The Pfam protein families database. Nucleic Acids Res, 2002. 30(1): p. 276-80. 9.Kurtz, S., et al., Computation and visualization of degenerate repeats in complete genomes. Proc Int Conf Intell Syst Mol Biol, 2000. 8: p. 228-38. 10.TIGER, Repeat-finder. [http://www.tigre.org/tdb/rice/repeatinfo-MUMmer.shtml], 1999. 11.Delcher, A.L., et al., Alignment of whole genomes. Nucleic Acids Res, 1999. 27(11): p. 2369-76. 12.Kurtz, S. and C. Schleiermacher, REPuter: fast computation of maximal repeats in complete genomes. Bioinformatics, 1999. 15(5): p. 426-7. 13.Henikoff, S. and J.G. Henikoff, Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A, 1992. 89(22): p. 10915-9. 14.Thompson, J.D., D.G. Higgins, and T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994. 22(22): p. 4673-80. 15.Tatusov, R.L., et al., The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res, 2000. 28(1): p. 33-6. 16.Tatusov, R.L., et al., The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 2003. 4(1): p. 41. 17.Apweiler, R., et al., InterPro--an integrated documentation resource for protein families, domains and functional sites. Bioinformatics, 2000. 16(12): p. 1145-50. 18.Bateman, A., et al., The Pfam protein families database. Nucleic Acids Res, 2004. 32 Database issue: p. D138-41. 19.Mulder, N.J., et al., The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res, 2003. 31(1): p. 315-8. 20.Attwood, T.K., The PRINTS database: a resource for identification of protein families. Brief Bioinform, 2002. 3(3): p. 252-63. 21.Corpet, F., J. Gouzy, and D. Kahn, The ProDom database of protein domain families. Nucleic Acids Res, 1998. 26(1): p. 323-6. 22.Katti, M.V., et al., Amino acid repeat patterns in protein sequences: their diversity and structural-functional implications. Protein Sci, 2000. 9(6): p. 1203-9. 23.McGuffin, L.J., K. Bryson, and D.T. Jones, The PSIPRED protein structure prediction server. Bioinformatics, 2000. 16(4): p. 404-5. 24.Adebiyi, E.F., T. Jiang, and M. Kaufmann, An efficient algorithm for finding short approximate non-tandem repeats. Bioinformatics, 2001. 17 Suppl 1: p. S5-S12.
|