跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 22:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊世丞
研究生(外文):Shih-Cheng Yang
論文名稱:活性離子蝕刻技術於磷化銦鎵鋁/砷化銦鎵通道摻雜場效應電晶體元件之製作與分析
論文名稱(外文):Reactive Ion Etching Technology for the Realization of AlGaInP/InGaAs Doped-Channel HFETs
指導教授:詹益仁詹益仁引用關係
指導教授(外文):Yi-Jen Chan
學位類別:博士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:92
語文別:英文
論文頁數:120
中文關鍵詞:活性離子蝕刻磷化銦鎵鋁通道摻雜場效應電晶體功率元件
外文關鍵詞:Power DeviceDCFETAlGaInPReactive Ion Etching
相關次數:
  • 被引用被引用:1
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
隨著無線通訊的蓬勃發展,射頻電路模組如功率放大器模組等,在無線通訊模組系統中的地位愈來愈重要。而國內對於射頻功率放大器模組之需求性日益增加,故如何成功設計並製作射頻功率模組,實為一重要的議題,而在射頻功率放大器模組中,元件的選擇成了很重要的課題。一個電子元件,具有高輸出功率、好的線性度以及大的工作範圍,在於功率電路設計上的應用是必要的。而本論文的主要目的即是開發新型結構之場效應電晶體,配合活性離子蝕刻技術的高度均勻性,研製出符合高頻、高功率以及高線性度的之電子元件。
(AlxGa1-x)0.5In0.5P (0�T x �T1),與GaAs晶格相互匹配的四元異質結構材料,由於其本身材料的優越特性,深具潛力取代傳統AlGaAs或GaInP材料,成為高速場效應電晶體中的蕭特基層。以(Al0.3Ga0.7)0.5In0.5P為例,相較於AlGaAs與GaInP材料,此四元材料擁有較大能隙(Eg=2.03 eV),較高的蕭特基能位障(Φb=1.0 eV),以及在場效應電晶體中,所形成AlGaInP/InGaAs接面時,造成的導帶不連續性較大(△Ec=0.28 eV),這些材料特性,將使得製作出的AlGaInP/InGaAs場效應電晶體,擁有一些AlGaAs或GaInP所無法達到的特性,例如較大的元件崩潰電壓、較小的閘極漏電流,以及較好的元件線性度,而這些元件特性將主宰在高功率應用上的設計。此外由於此材料的低表面復合速度以及對GaAs 的高蝕刻選擇性,更進一步確定AlGaInP / InGaAs此材料系統的重要性。
在本論文中, 首先著重於活性離子蝕刻技術的開發方面,基於選擇性的考量,我們採用BCl3+CHF3與BCl3+CF4兩種混和氣體當作蝕刻源,針對磷化銦鎵鋁四元化合物作蝕刻特性的分析。藉由改變混和氣體之間的流量比例,對GaAs/AlGaInP異質材料的選擇性可高達40~50。在表面破壞分析方面,我們則分別利用物性(AFM),電性(IV、TLM)及光學特性(PL),證明BCl3+CHF3混和氣體所產生的破壞較小。
在第三章中,由於通道摻雜場效應電晶體(DCFET)具有優越的電流推動能力與高崩潰電壓特性,相當適用於高功率元件之設計,故在本章節中,我們結合AlGaInP四元材料的優越特性,配合在第二章節開發的活性離子蝕刻技術,開發出(AlxGa1-x)0.5In0.5P/In0.15Ga0.85As通道摻雜場效應電晶體。不論從元件的直流、高頻或功率特性,甚至是可靠度測試,皆證明了(Al0.3Ga0.7)0.5In0.5P/In0.15Ga0.85As DCFETs深具潛力成為未來射頻功率放大器模組之關鍵性零組件。
在第四章中,為了觀察比較不同閘極長度在元件特性上的差異,我們利用電子束微影設備及三層電子束光阻,製作出0.2、0.4、0.8、1.0微米�n���{型閘極GaInP/InGaAs通道摻雜場效應電晶體,其中0.2微米元件可將元件電流增益截止頻率及功率增益截止頻率大幅增加為34 GHz以及50 GHz。除此之外,我們也針對不同閘極長度的元件作小訊號分析,並分析其元件內部傳輸效應,可得電子在0.2微米GaInP/InGaAs通道摻雜場效應電晶體之平均傳輸速度為1.1 x 107 cm/sec.
In recent years, microwave power devices play an important role in wireless communication systems. An electronic device with high linearity, high output power, and high-speed performance is essential for power application. Extensive studies have been focused on the AlGaAs/InGaAs and GaInP/InGaAs HFET devices, which demonstrated superior millimeter-wave performances. However, the conduction band offset (∆Ec) of AlGaAs/GaAs heterojunction is limited by the aluminum composition, which must be kept below 23%, to prevent the presence of donor complex (DX) center and ineffective donor activation. (AlxGa1-x)0.5In0.5P quaternary compounds, lattice matched to GaAs, are expected to substitute AlGaAs or GaInP materials as a Schottky layer, due to its wider bandgap and larger Schottky barrier height. Because of a larger conduction band discontinuity versus InGaAs channel, it provides a better carrier confinement for electrons and also a higher current density. In addition to these advantages, due to the nature of doped-channel design where a high linearity and a high current density can be achieved, this (AlxGa1-x)0.5In0.5P quaternary heterostructure devices are very promising for microwave power application.
In this thesis, a systematic approach for studying the etching characteristics of the quaternary (AlxGa1-x)0.5In0.5P compounds, using chlorine and fluorine mixing plasma, was applied. By adjusting the dry etching parameters, a high GaAs / AlGaInP etching selectivity ratio of 45 and 52 can be achieved for BCl3+CHF3 and BCl3+CF4 plasma systems, respectively. Based on the I-V, TLM, PL and AFM damage evaluations, BCl3+CHF3 gas system has been evidenced that it has a lower damage compared with the case using BCl3+CF4 system, and is suitable for the fabrication of heterojunction field electron transistor (HFETs) where the critical gate recess is involved. .
In chapter 3, the (AlxGa1-x)0.5In0.5P / In0.15Ga0.85As doped-channel FETs (DCFETs) were successfully fabricated and characterized, where the optimized RIE-recessed process was applied. Based on the experimental results, we conclude that for the aluminum content of (Al0.3Ga0.7)0.5In0.5P, i.e. x=0.3, is the best composition to realize DCFETs in terms of device characteristics. Its high Schottky barrier height (ΦB=1.0 eV) and large conduction-band discontinuity (△Ec= 0.27 eV versus GaAs) suppress the gate leakage current and enhance the current drive capability, and therefore increase the device operation dynamic range. From the reliability test, it could be more confirmed its superior quality of the Schottky performance in (Al0.3Ga0.7)0.5In0.5P layers. These remarkable properties indeed reveal that the studied device structure has a good potentiality for the high-power device applications.
In chapter 4, submicron Ga0.51In0.49P / In0.15Ga0.85As DCFETs with variable gate-lengths (0.2, 0.4, 0.6, and 1.0 μm) were developed by the e-beam lithography. Because the depletion region beneath the gate and the electric filed distribution along the channel are more uniform in the highly doped channel design, the short-channel effects in our 0.2 �慆 gate-length devices can be eliminated. An excellent linearity of our 0.2 �慆 gate-length devices also reveals that the GaInP / InGaAs doped-channel device developed in this work have a great potential candidate as a microwave power device in portable digital phone applications. Furthermore, in order to investigate the intrinsic transport characteristics of devices, a detailed delay time analysis was also performed on our 0.2 �慆 gate-length devices. The 0.2 �慆 GaInP / InGaAs DCFET demonstrates an electron transit time �輑.t of 1.88 psec, which is corresponding to an average saturated velocity �煲 of 1.1 x 107 cm/sec.
CHINESE ABSTRACT I
ABSTRACT III
FIGURE CAPTIONS VIII
TABLE CAPTIONS XII

CHAPTER 1 INTRODUCTION
1.1 Overview of High Speed Devices 1
1.2 Objective and Scope of the Present Research 4

CHAPTER 2 ETCHING CHARACTERIZATIONS OF AlGaInP QUATERNARY MATERIALS
2.1 Introduction 6
2.2 The Principle of Reactive Ion Etching Technology 7
2.2.1 Plasma Composition 7
2.2.2 Etching Mechanisms 9
2.2.3 Selectivity 10
2.2.4 Anisotropy 11
2.3 Etching Characterizations of AlGaInP Quaternary Materials 12
2.3.1 Etching System 12
2.3.2 Etching Experiment 13
2.3.3 Result and Discussion 13
2.4 Damage Evaluation 17
2.4.1 Characterization Methods 18
2.4.2 Experiments and Discussions of Etch-induced Damage 23
2.5 Summary 33

CHAPTER 3 RIE GATE-RECESSED AlGaInP/InGaAs DOPED-CHANNEL FETs
3.1 Introduction 35
3.2 (AlxGa1-x)0.5In0.5P Material System 36
3.3. Device Structure and Fabrication 37
3.3.1 Device Structure 38
3.3.2 Device Fabrication 41
3.4 Device Characterization 48
3.4.1 Schottky barrier height of (AlxGa1-x)0.5In05P material 49
3.4.2 Device DC and RF Characteristics 53
3.4.3 Device Microwave Power Performance 61
3.4.4 Reliability Evaluation 63
3.5 Summary 66

CHAPTER 4 RIE RECESSED GaInP / InGaAs DOPED-CHANNEL FETs WITH VARIABLE GATE-LENGTHS
4.1 Introduction 71
4.2 Device Structure and Fabrication 72
4.3 The Characteristics of the GaInP / InGaAs DCFETs with Variable Gate-lengths 75
4.3.1 Device DC Characteristics 75
4.3.2 Device RF Characteristics 78
4.3.3 Microwave Power Performances 82
4.3.4 Delay Time Analysis 84
4.4 Summary 101

CHAPTER 5 CONCLUSIONS 103

REFERENCES 106
PUBLICATIONS 115
Chapter 1
[1] H. Kromer, “Theory of a Wide-Gap Emitter for Transistors,” Proc. IRE, 45, pp. 1535, 1957.
[2] R.L. Anderson, “Germanium-Gallium Arsenide Heterojunctions,“ IBM J. Res. and Develop., vol. 4, pp. 283, 1960.
[3] R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, “Electron Mobilities in Modulation-Doped Semiconductor Heterojunction Super-lattices,” Appl. Phys. Lett. vol.33, pp.665, 1978.
[4] T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, “A New Field-Effect Transistor with Selectively Doped GaAs/n-AlGaAs Heterojunctions,” Japan. J. Appl. Phys., vol. 19, pp L225, 1980.
[5] R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, “Electron Mobilities in Modulation-Doped Semiconductor Heterojunction Super-lattices,” Appl. Phys. Lett. vol.33, pp.665, 1978.
[6] D. Delagebeaudeuf, P. Delescluse, P. Etienne, M. Laviron, J. Chaplart and NT Linh, “Two-dimensional Electron Gas MESFET Structure,” Elecrtron. Lett., vol. 16, pp.667, 1980.
[7] D. Delagebeaudeuf, J. Chevrier, M. Laviron, and P. Delescuse, “A New Relationship Between the Fukui Coefficient and Optimal Current Value for Low Noise Operation of Field-Effect Transistors,” IEEE Electron Device Lett., vol. 6, pp.444, 1985.
[8] J. J. Rosenberg, M. Benlamri, P. D. Kirchner, J. M. Woodal and G. D. Pettit, “Pseudomorphic InGaAs/GaAs Single Quantum Well High Electron Mobility Transistor,“ IEEE Electron Device Lett., vol. 6, pp. 491, 1985.
[9] T. Henderson, M. I. Aksun, C. K. Peng, H. Morkoc, P. C. Chao, P. M. Smith, K. H. G. Duh and L. F. Fester, “Microwave Performance of a Quarter-Micrometer Gate Low-Noise Pseudomorphic InGaAs/AlGaAs MODFET,” IEEE Trans. Electron Devices, vol. 7, pp. 649, 1986.
[10] M. T. Yang, and Y. J. Chan, “Device Linearity Comparisons Between Doped-channel and Modulation-doped Designs in Pseudomorphic Al0.3Ga0.7As/In0.2Ga0.8As Heterostructures,” IEEE Trans. Electron Devices, vol. 43, pp. 1174, 1996.
[11] M. T. Yang, “Studies of AlGaAs/InGaAs Doped-Channel Heterostructure FETs for Microwave Circuit Applications,“ Ph.D Dissertation, National Central University, 1995.
[12] Y. S. Lin, S. S. Lu, T. P. Sun, “High-Linearity High Current-Drivability GaInP/GaAs MISFET Using GaInP Airbridge Gate Structure,” IEEE Electron Device Lett., vol. 16, pp. 518, 1995.
[13] D. V. Lang, R. A. Logan, and M. Jaros, “Trapping Characteristics and a Donor-Complex (DX) Model for the Persistent-Photoconductivity Trapping Center in Te-Doped AlxGa1-xAs,” Phys. Rev. B, vol. 19, no. 2, pp. 1015, 1979.
[14] H. Kroemer, “Heterostructure Bipolar Transistors: What should we build?,” J. Vac. Sci. Technol. B1, pp.126, 1983.
[15] M. O. Watanabe and Y. Ohba, “Interface Properties for GaAs/InGaAlP Heterojunctions by the Capacitance-Voltage Profiling Technique,” Appl. Phys. Lett., vol. 50, pp. 906, 1987.
[16] J. R. Lothian, J. M. Kuo, W. S. Hobson, E. Lane, F. Ren, and S. J. Pearton, “Wet and Dry Etching Characteristics of Al0.5In0.5P,” J. Vac. Sci. Technol., B10 (3), pp.1061, 1992.
[17] J. R. Lothian, J. M. Kuo, W. S. Hobson, E. Lane, F. Ren, and S. J. Pearton, “Plasma and Wet Chemical Etching of In0.5Ga0.5P,” J. Electronic Materials, vol. 21, no. 4, pp.441, 1992.

Chapter 2
[18] P. Fay, S. Agarwala, C. Scafidi, and I. Adesida, “Reactive Ion Etching-Induced Damage in InAlAs/InGaAs Heterostructure Field-Effect Transistors Processed in HBr Plasma,” J. Vac. Sci. Technol. B12 (6), pp. 3322, 1994.
[19] A. J. Bariya, H. Shan, C. W. Frank, S. A. Self, and J. P. McVittie, “The Etching of CHF3 Plasma Polymer in Fluorine-Containing Discharges,” J. Vac. Sci. Technol. B9 (1), pp. 1, 1991.
[20] E. Kay, Methods and Materials in Microelectronic Technology, Plenum, New York, 1984.
[21] G. Franz, C. Hoyler, and J. Kaindl, “Reactive Ion Etching GaAs and AlAs: Kinetics and Process Monitoring,” J. Vac. Sci. Technol. B14 (1), vol. 14, pp. 126, 1996.
[22] M. R. Stephen, J. C. Jerome, D. W. William, Handbook of Plasma Processing Technology, Noyes Publications, 1990.
[23] M. Tokushima, H. Hida, and T. Maeda, “Enhanced Selectivity in GaAs/AlGaAs Selective Dry Etching in BCl3+ CF4 Plasma by Adsorbed CxFy for Precise Control of HJFET Threshold,” Inst. Phys. Conf. Ser. No. 145, pp. 285, 1995.
[24] W. H. Guggina, A.A. Ketterson, E. Andideh, J. Hughes, I.Adesita, S. Caracci, and J. Kolodzey, “Characterization of GaAs/AlGaAs Selective Reactive Ion Etching in SiCl4 /SiF4 Plasmas,” J. Vac. Sci. Technol. B8 (6), pp. 1956, 1990.
[25] C. B. Prater and Y. E. Strausser, “TappingModeTM Atomic Force Microscopy Applications to Semiconductors,” Digital Instruments, AN2-5/94.
[26] G. S. Oehrlein, Y. Zhang, D. Vender, and O. Jourbert, “Fluorocarbon High Density Plasmas II: Silicon Dioxide and Silicon Etching Using CF4 and CHF3,” J. Vac. Sci. Technol. A12 (2), pp. 333, 1994.

Chapter 3
[27] J. Dickmann, M. Berg, A Geyer, H. Daembkes, F. Scholz, and M. Moser, “(Al0.7Ga0.3)0.5In0.5P/In0.15Ga0.85As/GaAs Heterostructure Field Effect Transistors with Very Thin Highly p-Doped Surface Layer,” IEEE Trans. Electron Devices, vol. 42, pp. 2, 1995.
[28] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, H. S. Tsai, J. S. Weiner, H. C. Kuo, C. H. Lin, Y. K. Chen and W. E. Mayo, “In0.5(AlxGa1−x)0.5P HEMT’s for High-Efficiency Low-Voltage Power Amplifiers: Deign, Fabrication, and Device Results,” IEEE Trans. Electron Devices, vol. 47, pp. 1404, 1999.
[29] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, J. S. Weiner, J. Lin, W. E. Mayo, and Y. K. Chen, “Single- and Double-Heterojunction Pseudomorphic In0.5(Al0.3Ga0.7)0.5P/In0.2Ga0.8As High Electron Mobility Transistors Grown by Gas Source Molecular Beam Epitaxy," IEEE Electron Device Lett., vol. 18, pp. 550, 1997.
[30] Y. J. Chan, M. T. Yang, “Device Linearity Improvement by Al0.3Ga0.7As/ n+-In0.2Ga0.8As Heterostructure Doped-Channel FETs,” IEEE Electron Device Lett., vol. 16, pp. 33, 1995.
[31] F. T. Chien, S. C. Chiol, and Y. J. Chan, “Microwave Power Performance Comparison Between Single and Dual Doped-Channel Design in AlGaAs/InGaAs HFET’s,” IEEE Electron Device Lett., vol. 21, pp. 60, 2000.
[32] Vishay Telefunken, Physics of Optoelectronic Devices: Light-EmittingDiodes, http://home.hetnet.nl/~pasopd/pdfs/led_physics.pdf.
[33] S. J. Chang, C. S. Chang, Y. K. Su, P. T. Chang, Y. R. Wu, K. H. Huang, and T. P. Chen, “AlGaInP Yellow-Green Light-Emitting Diodes with a Tensile Strain Barrier Cladding Layer,” IEEE Photon. Technol. Lett., vol.9 , pp. 1199, 1997.
[34] P. Raisch, R. Winterhoff, W. Wagner, M. Kessler, H. Schweizer, T. Riedl, R. Wirth, A. Hangleiter, and F. Scholz, “Investigations on the Performance of Multiquantum Barriers in Short Wavelength (630 nm) AlGaInP Laser Diodes,” Appl. Phys. Lett., vol. 74, pp. 2158, 1999.
[35] S. A. Wood, C. H. Molloy, P. M. Smowton, P. Blood, D. J. Somerford, and C. C. Button, “Direct Monitoring of Thermally Activated Leakage Current in AlGaInP Laser Diodes,” Appl. Phys. Lett., vol. 75, pp. 1748, 1999.
[36] J. M. Kuo, Y. J. Chan, and Pavlidis, “Modulation-Doped Al0.52In0.48P/In0.2Ga0.8As Field-Effect Transistors,“ Appl. Phys. Lett., vol. 62, pp.1105, 1993.
[37] Y. Ohba, M. O. Watanabe, H. Kawasaki, K. Kamei, and T. Nakanisi, “Modulation-Doped In0.5Al0.5P/GaAs Field Effect Transistors,” Jpn. J. Appl. Phys., vol. 27, pp. L922, 1988.
[38] J. H. Kim, S. J. Jo, and J. I. Song, “Improved Microwave and Noise Performances of InGaP/In0.33Ga0.67As p-HEMT Grown on a Patterned GaAs Substrate,” Electron. Lett., vol.37, pp. 981, 2001.
[39] M. Takikawa and K. Joshin, “Pseudomorphic n-InGaP/InGaAs/GaAs High Electron Mobility Transistors for Low-Noise Amplifiers,” IEEE Electron Device Lett., vol. 14, pp. 406, 1993.
[40] M. O. Watanabe and Y. Ohba, “Se-related Deep Levels in InGaAlP,” J. Appl. Phys., vol. 60, pp. 1032, 1986.
[41] Z. P. Jiang, P. B. Fischer, S. Y. Chou, and M. I. Nathan, “Novel High Mobility Ga0.51In0.49P/GaAs Modulation-Doped Field-Effect Transistor Structures Grown Using a Gas Source Molecular Beam Epitaxy,” J. Appl. Phys., vol. 71, pp. 4632, 1992.
[42] S. S. Lu, C. L. Huang, and T. P. Sun, “High-Breakdown-Voltage Ga0.51In0.49P/GaAs I-HEMT and I2-HEMT with a GaInP Passivation Layer Grown Using a Gas Source Molecular Beam Epitaxy,” Solid-State Electron, vol. 38, pp.25, 1995.
[43] J. M. Kuo, H. C. Kuo, J. Y. Cheng, Y. C. Wang, Y. Lu, and W. E. Mayo, “Interface Optimization of AlInP/GaAs Multiple Quantum Wells Grown by Gas Source Molecular Beam Eitaxy,” J. Cryst. Growth, vol. 158, pp. 393-398, 1996.
[44] N. Iwata, K. Inosako, and M. Kuzuhara, “3V Operation L-Band Power Double-Doped Heterojunction FETs,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1465, 1993.
[45] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, and W. E. Mayo, ““Schottky Barrier Heights of In0.5(AlxGa1-x)0.5P (0≤ x ≤1) Lattice Matched to GaAs,” Solid-State Electron, vol. 42, pp.1045, 1998.
[46] T. H. Lim, T. J. Miller, F. Williamson, and M. I. Nathan, “Characterization of Interface Charge at Ga0.52In0.48P/GaAs Junctions Using Current–Voltage and Capacitance–Voltage Measurements,“ Appl. Phys., vol. 69, pp. 1599, 1996.
[47] S. P. Najda, A. H. Kean, M. D. Dawson, and G.. Duggan, “Optical Measurements of Electronic Bandstructure in AlGaInP Alloys Grown by Gas Source Molecular Beam Epitaxy,” J. Appl. Phys., vol. 77, pp. 3412, 1995.
[48] A. M. Goodman, “Metal-Semiconductor Barrier Height Measurement by the Differential Capacitance Method – One Carrier System,” J. Appl. Phys., vol. 34, pp.329, 1963.
[49] Y. C. Wang, Ph.D Dissertation, “Novel In0.5(AlxGa1-x)0.5P Power High Electron Mobility Transistors for Low Supply Voltage Wireless Communications,” The State University of New Jersey, 1998
[50] T. Okumura and K. N. Tu, “Electrical Characterization of Schottky Contacts of Au, Al, Gd, and Pt on n-Type and p-Type GaAs,” J. Appl. Phys., vol. 61, pp. 2955, 1987.
[51] J. L. Freeouf, T. N. Jackson, S. E. Laux, and J. M. Woodall, “Size Dependence of ‘Effective’ Barrier Heights of Mixed Phase Contacts,” J. Vac. Sci. Technol. vol. 21, pp. 570, 1982.
[52] I. Ohdomari and K. N. Tu, “Parallel Silicide Contacts,” J. Appl. Phys., vol. 51, pp. 3735, 1980.
[53] D. K. Schoroder, “Semiconductor Material and Device Characterization,” John Wiley & Sons, Inc., pp.136, 1990.
[54] E. S. Yang, “Microelectronic Devices,” McGraw-Hill, Inc., pp.188, 1988.
[55] R. Williams, Modren GaAs Processing Methods, Norwood : Artech House, 1990
[56] A. Mesarwi and A. Ignatiev, “Oxygen-Induced Al Surface Segregation in AlGaAs and the Effect of Y Overlayers on the Oxidation of the Y / AlGaAs Interface,” J. Appl. Phys. vol. 71, pp. 1943, 1992.

Chapter 4
[57] A. Endoh, Y. Yamashita, M. Higashiwaki, K. Hikosaka, T. Mimura, S. Hiyamizu, and T. Matsui, “High fT 50-nm-Gate Lattice-Matched InAlAs/InGaAs HEMTs,” Proceedings of Intl. Conf. on Indium Phosphide and Related Materials, pp. 87, 2000.
[58] M. Nihei, N. Hara, H. Suehiro, and S. Kuroda, “0.065 �慆 Gate InGaP/InGaAs/GaAs Pseudomorphic HEMT’s with Highly-Doped 11.5 nm Thick InGaP Electron Supply Layers,” Solid-State Electron., vol. 41, pp. 1647, 1997.
[59] K. L. Tan, P. H. Liu, D. C. Streit, R. Dia, A .C. Han, A. Freudenthal, J. Velebir, K. Stolt, J. Lee, M. Bidenbender, R. Lai, H. Wang, B. Allen, “A Manufacturable High Performance 0.1-�慆 Pseudomorphic AlGaAs/InGaAs HEMT Process for W-band MMICs,” IEEE GaAs IC Symposium Technical Digest, pp.251, 1992.
[60] H. Suehiro, T. Miyata, S. Kuroda, N. Hara, M. Takikawa, “Highly Doped InGaP/InGaAs/GaAs Pseudomorphic HEMT's with 0.35�慆 Gates,”IEEE Trans. Electron Devices, vol. 41, pp. 1742, 1994.
[61] Y. Awano, M. Kosugi, K. Kosemura, T. Mimura, M. Abe, “Short-Channel Effects in Subquarter-Micrometer-Gate HEMTs Simulation and Experiment,” IEEE Trans. Electron Devices, vol. 36, pp. 2260, 1989.
[62] H. Rohdin, C. Y. Su, N. Moll, A. Wakita, A. Nagy, V. Robbins, and M. Kauffman, “Semi-Analytical Analysis for Optimization of 0.1 �慆 InGaAs-Channel MODFET’s with Emphasis on On-State Breakdown and Reliability,” Proceedings of Intl. Conf. on Indium Phosphide Related Materials, pp. 357, 1997,
[63] R. Menozzi, M. Borgarino, Y. Baeyens, M. Van Hove, and F. Fantini, “On the Effects of Hot Electrons on the DC and RF Characteristics of Lattice-Matched InAlAs/InGaAs/InP HEMT’s,” IEEE Microwave and Guided Wave Lett., vol. 7, pp. 3, 1997.
[64] N. Moll, M. R. Hueschen, and A. Fisher-Colbrie, “Pulsed-Doped AlGaAs/InGaAs Pseudomorphic MODFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 879, 1988.
[65] R. Anholt, S. Swirhun, “Measurement and Analysis of GaAs Parasitic Capacitances,“ IEEE Trans. Microwave Theory Tech., vol. 39 pp. 1243, 1991.
[66] G. Dambrine et al, “A New Method for Determining the FET Small-Signal Equivalent Circuit,” IEEE Trans. Microwave Theory Tech., vol. 36, pp.1511, 1988.
[67] C. K. Lin, Master Thesis, National Central University, 2001.
[68] M. Berroth and R. Bosch, “Broad-band Determination of the FET Small-Signal Equivalent Circuit,” IEEE Trans. Microwave Theory Tech., vol. 38 pp.891, 1990.
[69] P. J. Tasker and B. Hughes, “Importance of Source and Drain Resistance to the Maximum fT of Millimeter-Wave MODFETs,” IEEE Electron Device Lett., vol. 10, pp. 291, 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 黃誌琳(1994)。如何落實國小親職教育。國教輔導,33(3),20-24。
2. 楊國賜(1986)。建立家庭與學校和諧關係的途徑。社教雙月刊,13,16-20。
3. 廖永靜(1999)。親職教育與父母參與。家庭教育雙月刊,1,15-22。
4. 楊國樞(1986)。家庭因素與子女行為-台灣研究的評析。中華心理學刊,28(1),7-28。
5. 趙文達(1989)。如何落實國小親職教育。輔導月刊,25,42-45。
6. 羅湘敏(1995)。障礙兒童親職教育理念的演變。國教天地,109,17-22。
7. 廖榮利、藍采風(1982)。親職教育的實施。台北:張老師月刊。
8. 鍾思嘉(1998)。親職教育的規劃與實施。學生輔導,59,16-25。
9. 陳玉賢(1997)。從特殊教育法修正案---談身心障礙學生親職教育的加強。國小特殊教育,23,28-32。
10. 陳訓祥(1991)。加強親職教育,建立美好家庭。社教雙月刊,43,9-12。
11. 林家興(2000)。親職教育實施方式的檢討與建議。測驗與輔導,151,3132-3135。
12. 侯月瑞(1991)。學校親職教育的檢討與突破。諮商與輔導,63,15-17。
13. 井敏珠(1995)。從親職教育之理念論國民中小學親職教育之實施。輔導季刊,31(1),13-20。
14. 王靜珠(1979)。青少年犯罪問題與親職教育。國教輔導,19(2),6-7。
15. 王天苗(1995)。心智發展障礙兒童家庭需要之研究。特殊教育研究學刊,9,73-90。