跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 17:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙建雄
研究生(外文):Chien-Shiung Chao
論文名稱:應用權重調諧之模糊PID控制器
論文名稱(外文):Weighted Fuzzy-PID Controllers
指導教授:莊堯棠
指導教授(外文):Yau-Tarng Juang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:89
中文關鍵詞:權重模糊PID控制器基因演算法
外文關鍵詞:weightedfuzzy-PID controllersgenetic algorithms
相關次數:
  • 被引用被引用:4
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是結合模糊理論、基因演算法及PID控制之觀念與優點有效率地設計出好的控制系統,研究如何應用基因演算法來設計一個具有權重調諧的模糊PID控制器。
首先我們提出一個Weighted Function,根據系統誤差來做權重的調整,再輸入到模糊控制器中產生一個輸出,最後經由PID控制器來控制受控體,其作用主要是加快系統的響應時間。整個控制器能在受控系統的參數與特性所知有限下做穩定的控制,同時有效地改善上升時間及安定時間,更降低了最大超越量,使控制效能達到預期。最後列舉一些例子經由電腦模擬的結果與數據證明,在性能上已經可以達到滿意的控制結果,顯現出我們所提出之方法的優點。
上述的控制器是利用基因演算法來自動搜尋所需的參數,並依性能指數的高低來調整控制器的參數。這個演算法在實驗中展現其優點:(1)有系統的搜尋最佳解。(2)與傳統嘗試錯誤法比較起來,這個方法可以節省大量的時間跟精力。(3)這個方法不需要額外的有關受控系統的專業知識及經驗。(4)系統的性能規格可以經由設計適當的適合函數(Fitness Function)而得。
This thesis investigates the technique of the weighted fuzzy-PID controllers by means of genetic algorithms.
First, we propose a weighted function to tune the weights of the system error into the fuzzy controller. Then, output of the fuzzy controller is transmitted into a PID controller to control plant. The controllers can stabilize a process with a minimal amount of prior knowledge and improve rise time, settling time and overshoot effectively. Some illustrative examples demonstrate that satisfactory performance is achieved.
By means of genetic algorithms, the parameters of the aforementioned controllers are determined to have a better performance. These experiment results show technique’s power and its advantages: (1) Systematic search. (2) This technique can save much more time and effort than that of conventional trial-and-error design method. (3) This technique does not need extra professional knowledge or mathematical analysis about system dynamics. (4) The performance specifications can be achieved by means of designing a proper fitness function.
Abstract--------------------------------------------------------------------------Ⅰ
Content---------------------------------------------------------------------------Ⅱ
List of Figures-------------------------------------------------------------------Ⅳ
List of Tables--------------------------------------------------------------------Ⅶ

Chapter 1 Introduction---------------------------------------------------------1
1.1 Research Motivations and Goal---------------------------------------1
1.2 Papers Review----------------------------------------------------------3
1.3 Thesis Overview--------------------------------------------------------4

Chapter 2 The Ziegler-Nichols PID Controller----------------------------5
2.1 Introduction------------------------------------------------------------------5
2.2 Ziegler-Nichols Rules for Tuning PID Controller----------------------6
2.2.1 Example----------------------------------------------------------------8
2.3 Simulation Result----------------------------------------------------------10

Chapter 3 Genetic Algorithms-----------------------------------------------12
3.1 Introduction----------------------------------------------------------------12
3.2 The Basic Construction of a GA-------------------------------------13
3.3 Elite Method---------------------------------------------------------------15
3.4 Reinforced Search Method---------------------------------------------16

Chapter 4 Weighted Fuzzy-PID Controllers------------------------------18
4.1 Introduction----------------------------------------------------------------19
4.2 Fuzzy-PID Controllers-----------------------------------------------23
4.2.1 Simulation Result----------------------------------------------------26
4.3 Weighted Fuzzy-PID Controllers----------------------------------------31
4.4 Simulation Results--------------------------------------------------------33
4.4.1 Simulation for G1(s)-------------------------------------------------34
4.4.2 Simulation for G2(s)-------------------------------------------------41
4.4.3 Simulation for G3(s)-------------------------------------------------44
4.4.4 Simulation for G4(s)-------------------------------------------------47
4.4.5 Simulation for G5(s)-------------------------------------------------49
4.5 Discussion------------------------------------------------------------------52

Chapter 5 Conclusions and Suggestions-----------------------------------53
5.1 Conclusions----------------------------------------------------------------53
5.2 Suggestions-----------------------------------------------------------54

References------------------------------------------------------------------------55
[1] L. A. Zadeh, “Fuzzy set,” Informat. Control, vol. 8. pp. 338-353, 1965.
[2] L. A. Zadeh, “Fuzzy algorithm,” Informat. Control, vol. 12. pp. 94-120, 1968.
[3] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” Int, J. Mach. Stud. , vol. 7, No. 1, pp. 1-13, 1975.
[4] D. A. Rutherford and G. A. Carter, “An heruristic adaptive controller for a sinter plant,” Proc. 2nd IFAC Symp. Automation in Mining, Mineral and Metal Processing, Johannesburg, pp. 315-324, 1976.
[5] Chuen Chien Lee, “Fuzzy Logic in Control System: Fuzzy Logic Controller, Part I,” IEEE Trans. On System. Man. And Cybernetics. , vol. 20, No. 2, pp. 404-418, 1990.
[6] Chuen Chien Lee, “Fuzzy logic in Control System: Fuzzy Logic Controller, Part II,” IEEE Trans. On System. Man. And Cybernetics. , vol. 20, No. 2, pp. 404-418, 1990.
[7] Z. Y. Zhao, M. Tomizuka, and S. Isaka, “Fuzzy Gain Scheduling of PID Controllers,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 23, No. 5, pp. 1392-1398, 1993.
[8] Visioli, A. , “Fuzzy logic based set-point weight tuning of PID controllers,” IEEE Trans. on Systems, Man, and Cybernetics, Pt. A, vol. 29, No. 6, pp. 587-592, 1999.
[9] Visioli, A. , “Tuning of PID controllers with fuzzy logic,” IEE Proc. Control Theory Appl., vol. 148, No. 1, pp. 1-8, 2001.
[10] K. Astrom and T. Hagglund, PID Controllers: Theory, Design and Tuning. New York: ISA, 1995.
[11] J. G. Ziegler and N. B. Nichols, “Optimum setting for automatic controllers,” ASME Trans. pp. 759-748, 1942.
[12] S. G. Tzafestas, “Fuzzy systems and fuzzy expert control: an overview,” Knowl. Eng. Rev, Vol. 9, No. 3 pp.229-268, 1994.
[13] J. J. Zhao, Design of Optimal Fuzzy Controllers Based on Genetic Algorithms. Master Thesis, NCU, 1996.
[14] Yi-Sheng Zhou and Lin-Ying Lai, “Optimal design for Fuzzy controllers by Genetic Algorithms,” IEEE Trans. On Industry Applications, Vol. 36, No. 1 pp. 93-97, 2000.
[15] L. Jouffe, Fuzzy inference system learning by reinforcement methods, IEEE Transaction on Systems, Man, and Cybernetics Part c, 28 (37) (1998) 338-355.
[16] Y. M. Park, U. C. Moon and K. Y. Lee, A self-organizing fuzzy logic controller for dynamic systems using a fuzzy auto-regressive moving average (FARMA) model, IEEE Transaction on Fuzzy Systems, 3 (1) (1995) 75-82.
[17] C. H. Jung, C. S. ham and K. I. Lee, A real-time self-tuning fuzzy controller through scaling factor adjustment for the steam generator of NPP, Fuzzy Sets and Systems, 74 (1995) 53-60.
[18] H. X. Li and H. B. Gatland, Conventional Fuzzy Control and its enhancement, IEEE Transaction on Systems Man, and Cybernetics, Part B, 28 (5) (1996) 791-780.
[19] Y. Q. Zhang and A. Kandel, Primary-fuzzy-sets -based normal fuzzy reasoning methodology and its applications, International Journal of Intelligent systems , 3 (1998) 375-401.
[20] X.T. Peng and S.M. Liu, Self-regulating PID controllers and its applications to a temperature controlling process, Fuzzy Computing, (1988) 355-363.
[21] J.Y. Chen and C.C. Kung, A modified fuzzy controller, Proceeding of the 15th National Symposium on Automatic Control, (1992) 352-357. (R.O.C).
[22] M. Maeda and S. Murakami, A self-tuning fuzzy controller, Fuzzy Sets and Systems, 51 (1992) 29-40.
[23] Z.Q. Wu, P.Z. Wang and T.H. Heng, A rule self-regulating fuzzy controller, Fuzzy Sets and Systems, 47 (1992) 13-21.
[24] S.Z. He, S. Tan and C.C Hang and P.Z. Wang, Control of dynamical processes using an on-line rule-adaptive fuzzy control system, Fuzzy Sets and Systems, 54 (1993) 11-22.
[25] L. Davis (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, (1991).
[26] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addison-Wesley, (1989).
[27] J.J. Grefenstette, ptimization of control parameters for genetic algorithms, IEEE Transaction on Systems Man, and Cybernetics, 16 (1) (1986) 122-128.
[28] K. Krishnkumr and D.E. Goldberg, Control system optimization using genetic algorithms, Journal of Guidance, Control, and Dynamics, 15 (3) (1992) 735-740.
[29] C. Perneel, J. M. Themlin, J. M. Renders and M. Acheroy, Optimization of fuzzy expert systems using genetic algorithms and neural networks, IEEE Transaction on Fuzzy Systems, 3(3) (1995) 300-312.
[30] P. P. Bonissone, P. S. Khedkar and Y. Chen, Genetic algorithms for automated tuning of fuzzy controllers: a transportation application, IEEE International Conference on Fuzzy Systems (1996) 674-680.
[31] X.M. Qi and T.C. Chin, Genetic algorithms based fuzzy controller for high order systems, Fuzzy Sets and Systems 91 (1997) 279-284.
[32] H. J. Cho, K. B. Cho, B. H. Wong, Fuzzy-PID hybrid control: Automatic rule generation using genetic algorithms, Fuzzy Sets and Systems, 92 (1997) 305-316.
[33] Katsuhiko Ogata, Modern Control Engineering, Prentice-Hall Fourth Edition, 2002.
[34] C. C. Wong and C. C. Chen, “Switching Grey Prediction PID Controller Design,” The Journal of Grey System, vol. 4, pp. 323-333, 1997.
[35] Zhi-Wei Woo, Hung-Yuan Chung, Jin-Jye Lin, “A PID type fuzzy controller with self-tuning scaling factors,” Fuzzy Sets and Systems, 115 (2000) 321-326.
[36] J. H. Holland, “Outline for a logical theory of adaptive system,” J. ACM, vol. 3, pp. 297-314, 1962.
[37] K. A. DeJong, “An analysis of the behavior of a class of genetic adaptive system,” Ph.D. dissertation (CCS), Univ. Mech., Ann Arbor, 1975.
[38] J. Mitzpatrick, J. J. Grefenstette, and D. Van Gucht, “Image registration by genetic search,” in Proc. IEEE southeastcon’84, pp. 460-464, 1984.
[39] J. J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht, “Genetic algorithm for the traveling salesman problem,” in Proc. Int. Conf. Genetic Algorithms and their Applications, pp. 160-165, 1985.
[40] K. Kristinsson and G. A. Dumont, “Genetic algorithms in system identification,” Third IEEE Int. symp. Intelligent contr., Arlington, VA, pp. 597-602, 1988.
[41] L. Davis, Ed. Genetic Algorithms and Simulated Annealing. London: Pitman, 1987.
[42] J. J. Grefenstette, Ed., Pro. Int. Conf. Genetic Algorithm and their applications. Hillsdale, NJ: Lawrene Erlbaum Associates, 1985.
[43] 劉智豪,“結合基因演算法與混合式模糊PID控制器之磁浮系統控制”,國立中山大學碩士論文,2003。
[44] 陳繹光,“適應性基因演算法與混合式模糊PID控制器於線性馬達之定位控制”,國立中山大學碩士論文,2003。
[45] 王文俊,“認識Fuzzy”,全華科技圖書股份有限公司出版,2001。
[46] 孫宗瀛 等,“Fuzzy控制理論、實作與應用”,全華科技圖書有限公司出版,2001。
[47] 張伯維,“應用動態灰色預測之模糊PID控制”,國立中央大學碩士論文,2003。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top