跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李勝義
研究生(外文):Sheng-Yi Li
論文名稱:低軌道衛星通訊系統的通道統計模型
論文名稱(外文):Statistical Channel Model for Low Earth Orbiting Satellite Communication Systems
指導教授:劉兆漢劉兆漢引用關係
指導教授(外文):Chao-Han Liu
學位類別:博士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:110
中文關鍵詞:衛星通訊仰角方位角電離層閃爍通道模型機率密度函數
外文關鍵詞:channel modelionospheric scintillationprobability density functionazimuth angleelevation anglesatellite communication
相關次數:
  • 被引用被引用:1
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
在低軌道衛星通訊系統的性能分析議題上,不論是採用不同的調變系統架構或是傳輸通道模型,在許多研究文獻中均有完整的探討。然而這些研究大多著重在假設某個固定場景(scenario) 的情況下來分析系統的性能表現,而沒有著重在考慮該場景是否有可能發生,或是發生的機率為何。由於低軌道衛星的通訊鏈路的仰角及方位角會隨時間改變,且根據以往對衛星通訊通道的研究結果顯示,不同鏈路的通道衰落統計特性也會有所不同,因此若要求得整體系統的性能表現,有必要將每個通訊鏈路發生的機率以及該鏈路的通道統計特性納入考量。
而在另一方面,許多傳輸通道的模型,例如仰角相依的通道模型,也未將電離層閃爍納入考量,其主要困難的原因是電離層閃爍的現象與電波頻率、地磁擾動、太陽的活動(以黑子數多寡表示)、時間、季節以及衛星鏈路的電離層穿透點所對應的地磁緯度等因素有關,因此需要一個時變且與地面-衛星幾何關係相依的通道模型。
本論文提出了兩個低軌道衛星鏈路的統計模型,其一是只有考慮仰角分佈的仰角機率密度函數模型,其二是同時考慮仰角及方位角不同的衛星鏈路機率分佈函數模型。所得結果則是用於探討以多波束低軌道衛星為基礎的DS-CDMA 通訊系統在不同的通道環境下,如仰角相依的Rice-lognormal通道以及與仰角及方位角有關的電離層閃爍通道,系統的位元錯誤率表現,並比較單一衛星以及在星系架構下採用衛星分集系統的性能比較。
System performance analysis of low earth orbiting (LEO) satellite based communication system, with different communication schemes and channel models, have been studied by many investigators. However, these studies have all been based on a fixed scenario for evaluating the system performance. The probability of occurrence of a given scenario due to the continuously changing elevation and azimuth angles has not been taken into consideration. To do so, appropriate probability distribution functions (PDFs) have to be studied.
Also, it has become more evident that ionospheric scintillation has to be taken into account in the evaluation of the performance of such global satellite communication systems. For most investigations, however, ionospheric scintillation has not been included in the proposed propagation channel models. The major difficulty lies in the fact that scintillation in the ionosphere varies according to radio frequency, day of year, time of day, ionospheric latitude and longitude, sunspot number, and magnetic activity. This requires a time-varying channel model that depends on earth-satellite geometry.
In this thesis, the probability distribution function for elevation angles and for satellite links consisting of both elevation and azimuth angles are derived based on earth-satellite geometry. The results are used to evaluate the bit error rate (BER) performance for LEO satellite based direct sequence-code division multiple access (DS-CDMA) communication systems under Rice-lognormal channel, which is characterized as elevation angle dependent, and under ionospheric scintillation channel, which is time-varying and is related to both the elevation and azimuth angles. Performance improvement due to satellite diversity is also examined.
Contents i
List of Figures iv
List of Tables vii
Acronyms & abbrev viii
1 Introduction 1
1.1. Background 1
1.2. Fundamental Properties of Satellite Orbits 2
1.2.1. Kepler’s First Law 2
1.2.2. Kepler’s Second Law 3
1.2.3. Kepler’s Third Law 4
1.3. Definitions of Terms 5
1.4. Orbit Altitude Choices 7
1.4.1. Geostationary Earth Orbit (GEO) 7
1.4.2. Low Earth Orbits (LEO) 7
1.4.3. Medium Earth Orbits (MEO) 8
1.5. Constellations 8
1.6. Earth-satellite Geometry 13
1.6.1. Spherical Geometry Laws 13
1.6.2. Determine Position of Satellites 16
1.7. Multi-spot Beam Geometry 21
1.8. Antenna Radiation Pattern 23
1.9. Summary 24
1.10. About This Thesis 25
1.10.1. Problem Statement and Scope 25
1.10.2. Contributions of This Thesis 25
1.10.3. Organization of This Thesis 26
2 Probability Distribution of Satellite Links 28
2.1. Ground-Based Satellite Observations 28
2.1.1. Satellite Ground Tracks 28
2.1.2. Probability Density Function of Subsatellite Points 29
2.2. Probability Density Function of Elevation Angles 34
2.2.1. Overview 34
2.2.2. The PDF of Elevation Angles in a Single Satellite Pass 37
2.2.3. The PDF of Maximum Elevation Angles 39
2.2.4. The PDF of Elevation Angles 46
2.3. Probability Density Function of Satellite Links 47
2.4. Elevation Angle Distribution in Satellite Diversity Strategy 49
2.5. Numerical Simulations 50
2.6. Summary 58
3 Performance Analysis Over Elevation Angle Dependent Rice-lognormal Fading Channel 59
3.1. System Outline 59
3.1.1. Satellite Link 59
3.1.2. Modulation Scheme 61
3.1.3. MAI Analysis 62
3.2. Propagation Channel Model 65
3.2.1. Overview 65
3.2.2. Elevation-angle-dependent PDF 66
3.3. BER Performance Analysis 68
3.4. Numerical Simulations 72
3.4.1. Single Satellite Case 72
3.4.2. Using Satellite Diversity 75
3.5. Summary 79
4 Performance Analysis over Ionospheric Scintillation Channel 80
4.1. Fundamental of Ionospheric Scintillation 80
4.2. Observational Evidence 83
4.2.1. Sunspot Number Dependence 83
4.2.2. Geomagnetic Disturbances Dependence 85
4.2.2.1. Kp Index 85
4.2.2.2. Dst Index 87
4.2.3. Frequency Dependence 87
4.2.4. Seasonal-longitudinal Dependence 88
4.3. WBMOD Ionospheric Scintillation Model 88
4.4. DS-CDMA Performance Analysis 95
4.4.1. System Model 96
4.4.2. BER Performance 96
4.5. Numerical Simulations 98
4.5.1. Single Satellite Case 98
4.5.2. Using Satellite Diversity 98
4.6. Summary 101
5 Conclusions 102
5.1. Summary 102
5.2. Achievements 103
5.3. Further Works 103
References 106
[1]Satellite Situation Report, Data available from NASA's Goddard Space Flight Center, http://oig1.gsfc.nasa.gov/
[2]INTELSAT web site: http://www.intelsat.com/
[3]INMATSAT web site: http://www.inmarsat.org/
[4]C. E. Fossa et al., “An overview of the IRIDIUM low earth orbit (LEO) satellite system,” Aerosp. Electro. Conf. NAECON 1998, pp. 152-159, Jul., 1998.
[5]F. J. Dietrich, P. Metzen and P. Monte, “The Globalstar cellular satellite system,” IEEE Trans. Antennas Propagat., vol. 46, no. 6, pp. 935-942, Jun. 1998.
[6]J. R. Wartz, Spacecraft attitude determination and control, Dordrecht Holland, 1984.
[7]A. C. Clarke, “Extra-terrestrial relays,” Wireless Word, pp. 305-308, Oct. 1945.
[8]H. Fu, G. Bi and K. Arichandran, “Performance of multi-beam CDMA-based LEO satellite systems in a Rice-lognormal channel,” IEEE Commun. Lett., vol. 3, no. 4, pp. 88-90, Apr. 1999.
[9]R. D. Gaudenzi and F. Giannetti, “DS-CDMA satellite diversity reception for personal satellite communication: satellite-to-mobile link performance analysis,” IEEE Trans. Veh. Technol., vol. 47, no. 2, pp. 658-672, May 1998.
[10]G. Maral and M. Bousquet, Satellite communications systems, 3rd ed., John Wiley & Sons, 1999.
[11]F. Vatalaro, G. E. Corazza, C. Caini and C. Ferrarelli, “Analysis of LEO, MEO and GEO global mobile satellite systems in the presence of interference and fading,” IEEE J. Sel. Areas Commun., vol. 13, no. 2, pp. 291-300, Feb. 1995.
[12]S. -Y. Li and C. H. Liu, “An analytical model to predict the probability density function of elevation angles for LEO satellite systems,” IEEE Commun. Lett., vol. 6, no. 4, pp. 138-140, Apr. 2002.
[13]S. -Yi. Li and C. H. Liu, “Modeling the effects of ionospheric scintillations on LEO satellite communications,” IEEE Commun. Lett., vol. 8, no. 4, pp. 147-149, Mar. 2004.
[14]S. -Y. Li and C. H. Liu, “Impact of Ionospheric Scintillations on LEO satellite DS-CDMA communication system,” Electron. Lett., vol. 40, no. 8, pp.486-488, Apr. 2004.
[15]I. Ali, N. Al-Dhahir and J. E. Hershey, “Doppler characterization for LEO satellites,” IEEE Trans. Commun., Vol. 46, No. 3, pp. 309–313, Mar. 1998.
[16]A. Papoulis, Probabilities, random variables, and stochastic processes, 3rd ed., New York: McGraw-Hill, 1991.
[17]G. E. Corazza and F. Vatalaro, “A statistical model for land mobile satellite channels and its application to nongeostationary orbit systems,” IEEE Trans. Veh. Technol., vol. 43, no. 3, pp. 738–742, Aug. 1994.
[18]R. Akturan and W. J. Vogel, “Path diversity for LEO satellite-PCS in the urban environment,” IEEE Trans. Antennas propagat., vol. 45, no. 7, Jul. 1997.
[19]K. E. Crowe and R. A. Raines, “A model to describe the distribution of transmission path elevation angles to the Iridium and Globalstar satellite systems,” IEEE Commun. Lett., vol. 3, no. 8, pp. 242–244, Aug. 1999.
[20]“Satellite Tool Kit (STK) Version 4.1,” Analytical Graphics, Inc., Malvern, PA 19355.
[21]“TIA/EIA/IS-95 – Mobile station-base station compatibility standard for dual-mode wideband spread spectrum cellular system,” Telecommunication Industry Assoc., Jul. 1993.
[22]F. Ananasso and F. D. Priscoli, “The role of satellite in personal communication service,” IEEE J. Select. Areas Commun., vol. 13, no. 2, pp. 180-195, Feb. 1995.
[23]L. Milstein, T. Rappaport, and R. Barghouti, “Performance evaluation for cellular CDMA,” IEEE J. Select. Areas Commun., vol. 10, no. 4, pp. 680-689, May 1992.
[24]B. R. Vojcic, R. L. Pickholtz and L. B. Milstein, “Performance of DS-CDMA with imperfect power control operating over a low earth orbiting satellite link,” IEEE J. Select. Areas Commun., vol. 12, no. 4., pp. 560-567, May 1994.
[25]B. R. Vojcic, L. B. Milstein and R. L. Pickholtz, “Downlink DS CDMA performance over a mobile satellite channel,” IEEE Trans. Veh. Technol., vol. 45, no. 3, pp. 551-560, Aug. 1996.
[26]H. Bischl, M. Wener and E. Lutz, “Elevation-dependent channel model and satellite diversity for NGSO S-PCNs,” 46th Veh. Technol. Conf., Atlanta, GA, pp. 1038-1042, Apr. 1996.
[27]C. Loo, “A statistical model for a land mobile satellite link,” IEEE Trans. Veh. Technol., vol. 34, no. 3, pp. 122-127, 1985.
[28]H. Suzuki, “A statistical model for urban radio propagation,” IEEE Trans. Commun., vol. 25, no. 7, pp. 673-680, Jul. 1977.
[29]M. Sforza and S. Buonomo, “Characterization of the propagation channel for nongeostationary LMS systems at L- and S- bands: narrow band experimental data and channel modeling,” Proc. XVII NAPEX Conf., Pasadena, CA, Jun. 14-15, 1993.
[30]W. C. Lindsey, “Error probabilities for Rician fading multichannel reception of binary and N-ary signals,” IEEE Trans. Info. Theory, vol. 10, no. 4, pp. 339-350, Oct. 1964.
[31]R. R. Taur, “Simultaneous 1.5 and 4-GHz ionospheric scintillation measurement,” Radio Sci. vol. 11, no. 12, pp. 1029-1036, Dec. 1976.
[32]E. J. Fremouw, et al., “Early results from the DNA wideband satellite experiment-complex signal scintillation,” Radio Sci., vol. 13, no.1, pp. 167-187, Jan.-Feb. 1978.
[33]K. C. Yeh and C. H. Liu, “Radio wave scintillations in the ionosphere,” Proc. IEEE, vol. 70, no. 4, pp. 324-360, Apr. 1982.
[34]H. E. Whitney, J. Aarons, R. S. Allen, and D. R. Seemann, “Estimation of the cumulative amplitude probability distribution function of ionospheric scintillations,” Radio Sci., vol. 7, no. 12, pp. 1095-1104, Dec. 1972.
[35]B. Chytil, “The distribution of amplitude scintillation and the conversion of scintillation indices,” J. Atmos. Terr. Phys., vol. 29, no. 9, pp. 1175-1177, Sep. 1967.
[36]R. K. Crane, “Ionospheric scintillation,” Proc. IEEE, vol. 65, no. 2, pp. 180-199, Feb. 1977.
[37]J. Aarons, “Global morphology of ionospheric scintillations,” Proc. IEEE, vol. 70, no. 4, pp. 360-378, Apr. 1982.
[38]M. C. Kelly, The Earth Ionosphere, Academic Press, San Diego, 1989.
[39]X. Pi, A. J. Mannucci, U. J. Lindqwister and C. M. Ho, “Monitoring of global ionospheric irregularities using the worldwide GPS network.” Geophys. Res. Lett., vol. 24, no.18, pp. 2283-2286, Sep. 1997.
[40]J. Aarons, M. Mendilo and R. Yantosca, “GPS phase fluctuations in the equatorial region during the MISETA 1994 campaign,” J. Geophys. Res., vol. 101, no. 12, pp. 26851-26862, Dec. 1996.
[41]Data available from Solar Data Services at NOAA's National Geophysical Data Center (NGDC): http://www.ngdc.noaa.gov/stp/SOLAR/solar.html
[42]D. J. Fang and C. H. Liu, “A morphological study of gigahertz equatorial scintillations in the Asia region,” Radio Sci., vol. 18, no. 6, pp. 241-252, Mar.-Apr. 1983.
[43]S. Basu, E. MacKenzic and Su. Basu, “Ionospheric constraints on VHF/UHF communication links during solar maximum and minimum periods,” Radio Sci., vol. 23, no.3, pp. 363-378, May-Jun. 1988.
[44]S. J. Shan, J. Y. Liu, F. S. Kuo, C. C. Liu and H. F. Tsai, “GPS phase fluctuation observed along the American sector during low irregularity activity months of 1997-2000,” Earth Planets Space, vol. 54, no. 2, pp. 141-152, Feb. 2002.
[45]J. Y. Liu, H. F. Tsai and T. K. Jung, “Total electron content obtained by using the global positioning system,” Terr. Atmos. Oceanic Sci., vol. 7, no. 1, pp. 107-117, Mar. 1996.
[46]Data available from the DACGSM (Data Analysis Center for Geomagnetism and Space Magnetism) : http://swdcwww.kugi.kyoto-u.ac.jp/wdc/expdata.html
[47]E. J. Fremouw, R. L. Leadabrand, R. C. Livingston, M. D. Cousins, C. L. Rino, B. C. Fair, and R. A. Long, “Early results from the DNA Wideband satellite experiment – complex-signal scintillation,” Radio Sci., vol. 13, no. 1, pp. 167-187, Jan. – Feb. 1978.
[48]J. Aarons, “The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence,” Space Sci. Rev., vol. 63, pp. 209-243, 1993.
[49]E. J. Fremouw and J. F. Bates, “Worldwide behavior of average VHF-UHF scintillation,” Radio Sci., vol. 6, pp. 863-869, Oct. 1971.
[50]C. L. Rino, “A power low phase screen model for ionospheric scintillation 1. Weak scatter,” Radio Sci., vol. 14, no. 6, pp. 1135-1145, Nov. – Dec. 1979.
[51]C. L. Rino, “A power low phase screen model for ionospheric scintillation 2. Strong scatter,” Radio Sci., vol. 14, no. 6, pp. 1147-1155, Nov. – Dec. 1979.
[52]J. A. Secan, R. M, Bussy and E. J. Fremouw, “High-latitude upgrade to the wideband ionospheric scintillation model,” Radio Science, vol. 32, no. 4, pp. 1567-1574, Jul.-Aug. 1997.
[53]J. A. Secan, R. M, Bussy and E. J. Fremouw, “An improved model of equatorial scintillation,” Radio Sci., vol. 30, no. 3, pp. 607-617, May-Jun. 1995.
[54]E. N. Bramley and R. Browning, “Mid-latitude ionospheric scintillations of geostationary satellite signals at 137MHz,” J. Atmos. Terr. Phys, vol. 40, pp. 1247-1255, 1978.
[55]R. S. Conker, M. B. El–Arini, C. J. Hegarty and T. –Y. Hsiao, Modeling the effects of ionospheric scintillation on GPS/SBAS availability, MITRE product, Aug. 2000.
[56]T. Eng and L. B. Milstein, “Coherent DS-CDMA performance in Nakagami multipath fading,” IEEE Trans. Commun. Vol. 43, no. 2/3/4, Feb./Mar./Apr. 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top