# 臺灣博碩士論文加值系統

(3.235.56.11) 您好！臺灣時間：2021/08/04 07:07

:::

### 詳目顯示

:

• 被引用:0
• 點閱:116
• 評分:
• 下載:0
• 書目收藏:0
 本文主要是討論非線性之時間延遲系統在加入模糊控制器後之穩定度，以及考慮當系統存在外部干擾時，系統對外部干擾的容忍能力。首先以Takagi 和 Sugeno模糊模型來表示所討論的非線性之時間延遲系統，再來加入模糊控制器，並討論此時系統未加入雜訊時的穩定狀態；接著加入外部雜訊並以 控制理論作為系統對抗雜訊容忍程度的控制，以求得系統的性能指標 。最後將以化學攪拌槽的例子做為本文中所提出方法的模擬驗證。
 This thesis introduces a fuzzy linear control design procedure for the nonlinear time-delay systems with optimal robustness performance. Based on the Takagi–Sugeno (T-S) fuzzy models, a fuzzy state feedback controller is developed to stabilize the nonlinear time delay system by the Lyapunov approach. Besides, the effect of external disturbance on control performance is attenuated to a minimum value. Thus based on the fuzzy linear model, performance design can be achieved in nonlinear control systems. Sufficient conditions for the existence of fuzzy state feedback gain are derived through the numerical solution of a set of linear matrix inequalities. An illustrative example based on the continuous stirred tank reactor (CSTR) model is presented.
 Abstract---------------------------------------------------------------------Ⅰ Content----------------------------------------------------------------------Ⅱ List of Figures--------------------------------------------------------------Ⅳ List of Tables---------------------------------------------------------------Ⅴ Chapter 1 Introduction-------------------------------------------------------1 1-1 Background-------------------------------------------------------1 1-2 Motivation-------------------------------------------------------2 1-3 Organization-----------------------------------------------------3 Chapter 2 System model description-------------------------------------------5 2-1 Introduction-----------------------------------------------------5 2-2 Takagi-Sugeno Fuzzy Model with time delay------------------------5 Chapter 3 PDC controller design----------------------------------------------9 3-1 Introduction-----------------------------------------------------9 3-2 State feedback fuzzy controller design---------------------------9 3-3 Stabilization analysis------------------------------------------11 Chapter 4 H infinity control------------------------------------------------13 4-1 Introduction----------------------------------------------------13 4-2 Control design via fuzzy linear control-----------------------14 Chapter 5 Simulation and Discussion-----------------------------------------20 5-1 A CSTR example--------------------------------------------------20 5-2 Discussion------------------------------------------------------27 Chapter 6 Conclusions-------------------------------------------------------33 6-1 Conclusions-----------------------------------------------------33 References-------------------------------------------------------------------34
 [1]O. Bilous and N. Admundson, “Chemical reactor stability and sensitivity,” AI ChE J., vol. 1, pp. 513–521, 1955.[2]S. Boyd, L. E, Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Philadelphia, 1994.[3]Y. Y. Cao and P. M. Frank, “Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach,” IEEE Transactions on Fuzzy Systems, vol. 8, pp. 200 – 211, April. 2000.[4]B. S. Chen, T. S. Lee, and J. H. Feng, “A nonlinear control design in robotic systems under parameter perturbation and external disturbance,” International Journal of Control, vol. 59, pp. 439–461, 1994.[5]B. S. Chen, C. H. Lee and Y. C. Chang, “ tracking design of linear systems: Adaptive fuzzy approach,” IEEE Transactions on Fuzzy Systems, vol. 4, pp. 32–43, Nov. 1996.[6]B. S. Chen, H. J. Uang and C. S. Tseng, “Robust tracking enhancement of robot systems including motor dynamics: A fuzzy-based dynamic game approach,” IEEE Transactions on Fuzzy Systems, vol. 6, pp. 538–552, Nov. 1998.[7]B. S. Chen, C. S. Tseng and H. J. Uang, ” Robustness design of nonlinear dynamic systems via fuzzy linear control,” IEEE Transactions on Fuzzy Systems, vol. 7, pp. 571 – 585, Oct. 1999.[8]M. J. Er, D. H. Lin, “A New Approach for Stabilizing Nonlinear Systems with Time Delays,” International Journal of Intelligent Systems, vol. 17, pp. 289–302, 2002[9]B. Friedland, Advanced Control System Design. Englewood Cliffs, NJ: Prentice-Hall, 1996.[10]P. Gahinet, A. Nemirovski and A. J. Laub, LMI control toolbox user’s guide, Natick, Ma: The Mathworks Inc., 1995.[11]Y. Gu, H.O. Wang, K. Tanaka and L.G. Bushnell, “Fuzzy control of nonlinear time-delay systems: stability and design issues,” Proceedings of the 2001, American Control Conference, 2001, vol. 6, pp. 4771 - 4776, June. 2001.[12]A. Isidori and A. Asolfi, “Disturbance attenuation and control via measurement feedback in nonlinear systems,” IEEE Transactions on Automatic Control, vol. 37, pp. 1283–1293, Sept. 1992.[13]A. Isidori, “ control via measurement feedback for affine nonlinear systems,” International Jouronal Robust and Nonlinear Control, 1994.[14]H. K. Khalil, Nonlinear Systems. London, U.K.: Macmillan, 1992.[15]E. Kim, M. Park, S. Ji, and M. Park, “A new approach to fuzzy modeling,” IEEE Transactions on Fuzzy Systems, vol. 5, pp. 328–337, Aug. 1997.[16]B. Lehman and E. I. Verriest, “Stability of a continuous stirred reactor with delay in the recycle streams,” in Proc. 30th IEEE Conf. Dec. Contr., Brighton, U.K., pp. 1875–1876, 1991.[17]B. Lehman, J. Bentsman, S. V. Lunel, and E. I. Verriest, “Vibrational control of nonlinear time lag systems with bounded delay: Averaging theory, stabilizability, and transient behavior,” IEEE Transactions on Automatic Control, vol. 39, pp. 898–912, May 1994.[18]D. H. Lin, M. J. Er, “A New Approach for Stabilizing a TS Model Fuzzy System,” International Journal of Intelligent Systems, vol. 16, pp. 1321–1332, 2001.[19]J. Lygeros, “A formal approach to fuzzy modeling,” IEEE Transactions on Fuzzy Systems, vol. 5, pp. 317–327, Aug. 1997.[20]K. Narendra and A. M. Annaswamy, “A new adaptation law for robust adaptation without persistent excitation,” IEEE Transactions on Automatic Control, vol. AC-32, pp. 134–145, Feb. 1987.[21]R. Palm, D. Driankov, and H. Hellendoorn, Model Based Fuzzy Control.Berlin, Germany: Springer-Verlag, 1997.[22]M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” IEEE Transactions on Fuzzy Systems, vol. 28, pp. 15–33, Oct. 1988.[23]M. Sugeno, Fuzzy Control. 1988 (in Japanese).[24]K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Sysems., vol. 45, no. 2, pp. 135–156, 1992.[25]K. Tanaka, T. Ikeda, and H.O. Wang, ”Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Transactions on Fuzzy Systems, vol. 6, pp. 250 – 265, May. 1998.[26]T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man, Cybernetics, vol. SMC-15, pp. 116–132, Jan. 1985.[27]T. Takagi and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 45, no. 2, pp. 135–156, 1992[28]M.C.M Teixeira and S.H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp. 14–23. 1999.[29]H. Wang, K. Tanaka, and M. Griffin, “Parallel distributed compensationof nonlinear systems by Takagi and Sugeno’s fuzzy model,” in Proc.FUZZY-IEEE, Yokohama, Japan, 1995, pp. 531–538.[30]H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: Stability and design issues,” IEEE Transactions on Fuzzy Systems, vol. 4, pp. 14–23, Feb. 1996.[31]R. J. Wang, W. W. Lin and W. J. Wang, “Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems,” IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 34, Issue: 2 , pp. 1288 - 1292 April. 2004.[32]L. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Transactions on Systems, Man, Cybernetics, vol. SMC-3, pp. 28–44, Jan. 1973.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 具有H-infinity強健性之模糊模式追蹤控制 2 穩定模糊控制器的設計應用在三節車廂車輛的倒車行駛控制 3 非線性隨機模糊系統之多目標Pareto最佳化濾波器設計 4 T-S 模糊系統具不確定項與輸出雜訊之觀測器設計 5 動態模糊系統最佳化響應與穩定性之控制 6 H-ihfinity取樣模糊系統動態輸出回饋控制 7 以基因演算為基礎之非線性系統模糊控制器設計 8 具有Hinfinity性能之T-S模糊時間延遲系統的控制 9 非線性離散時間系統的L_1最佳化控制設計使用模糊次佳逼近法 10 以LMI為基礎之模糊與非線性系統的精確與近似控制 11 史都華平台的H∞強健控制器設計

 無相關期刊

 1 具有Hinfinity性能之T-S模糊時間延遲系統的控制 2 狀態空間及描述子系統H-infinity中心控制器之幾何與動態結構 3 具前饋干擾之線性連續時間描述子系統H-infinity靜態輸出回授之研究 4 白樸及其《牆頭馬上》研究 5 具線性分數擾動之T-S模糊時間延遲系統穩定化之研究 6 線性系統與T-S模糊系統的強健控制器設計 7 具時變不確定量追蹤系統之H_infinity強健控制 8 線性離散時間描述子系統H-infinity濾波器設計 9 壓電平台之設計、製造與控制 10 強健性載具設計分析 11 不確定量奇異時間延遲系統延遲相關之強健H∞控制器設計 12 網路型控制系統之延遲分析與設計 13 結合T-S模糊模型與變結構控制技術於軌跡追蹤及可靠度控制之研究 14 T-S模糊系統之最佳化時間控制 15 非線性模糊-H∞控制器之設計研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室