跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 07:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪偉祥
研究生(外文):Wei-Hsiang Hung
論文名稱:具有Hinfinity性能之T-S模糊時間延遲系統的控制
論文名稱(外文):H infinity control for T-S fuzzy time-delay systems
指導教授:莊堯棠
指導教授(外文):Yau-Tarng Juang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:58
中文關鍵詞:T-S模糊模型Lyapunov法線性矩陣不等式非線性系統
外文關鍵詞:Lyapunov stableLMIT-S fuzzy modelnonlinear systems
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是討論非線性之時間延遲系統在加入模糊控制器後之穩定度,以及考慮當系統存在外部干擾時,系統對外部干擾的容忍能力。首先以Takagi 和 Sugeno模糊模型來表示所討論的非線性之時間延遲系統,再來加入模糊控制器,並討論此時系統未加入雜訊時的穩定狀態;接著加入外部雜訊並以 控制理論作為系統對抗雜訊容忍程度的控制,以求得系統的性能指標 。最後將以化學攪拌槽的例子做為本文中所提出方法的模擬驗證。
This thesis introduces a fuzzy linear control design procedure for the nonlinear time-delay systems with optimal robustness performance. Based on the Takagi–Sugeno (T-S) fuzzy models, a fuzzy state feedback controller is developed to stabilize the nonlinear time delay system by the Lyapunov approach. Besides, the effect of external disturbance on control performance is attenuated to a minimum value. Thus based on the fuzzy linear model, performance design can be achieved in nonlinear control systems. Sufficient conditions for the existence of fuzzy state feedback gain are derived through the numerical solution of a set of linear matrix inequalities. An illustrative example based on the continuous stirred tank reactor (CSTR) model is presented.
Abstract---------------------------------------------------------------------Ⅰ
Content----------------------------------------------------------------------Ⅱ
List of Figures--------------------------------------------------------------Ⅳ
List of Tables---------------------------------------------------------------Ⅴ
Chapter 1 Introduction-------------------------------------------------------1
1-1 Background-------------------------------------------------------1
1-2 Motivation-------------------------------------------------------2
1-3 Organization-----------------------------------------------------3
Chapter 2 System model description-------------------------------------------5
2-1 Introduction-----------------------------------------------------5
2-2 Takagi-Sugeno Fuzzy Model with time delay------------------------5
Chapter 3 PDC controller design----------------------------------------------9
3-1 Introduction-----------------------------------------------------9
3-2 State feedback fuzzy controller design---------------------------9
3-3 Stabilization analysis------------------------------------------11
Chapter 4 H infinity control------------------------------------------------13
4-1 Introduction----------------------------------------------------13
4-2 Control design via fuzzy linear control-----------------------14
Chapter 5 Simulation and Discussion-----------------------------------------20
5-1 A CSTR example--------------------------------------------------20
5-2 Discussion------------------------------------------------------27
Chapter 6 Conclusions-------------------------------------------------------33
6-1 Conclusions-----------------------------------------------------33
References-------------------------------------------------------------------34
[1]O. Bilous and N. Admundson, “Chemical reactor stability and sensitivity,” AI ChE J., vol. 1, pp. 513–521, 1955.
[2]S. Boyd, L. E, Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Philadelphia, 1994.
[3]Y. Y. Cao and P. M. Frank, “Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach,” IEEE Transactions on Fuzzy Systems, vol. 8, pp. 200 – 211, April. 2000.
[4]B. S. Chen, T. S. Lee, and J. H. Feng, “A nonlinear control design in robotic systems under parameter perturbation and external disturbance,” International Journal of Control, vol. 59, pp. 439–461, 1994.
[5]B. S. Chen, C. H. Lee and Y. C. Chang, “ tracking design of linear systems: Adaptive fuzzy approach,” IEEE Transactions on Fuzzy Systems, vol. 4, pp. 32–43, Nov. 1996.
[6]B. S. Chen, H. J. Uang and C. S. Tseng, “Robust tracking enhancement of robot systems including motor dynamics: A fuzzy-based dynamic game approach,” IEEE Transactions on Fuzzy Systems, vol. 6, pp. 538–552, Nov. 1998.
[7]B. S. Chen, C. S. Tseng and H. J. Uang, ” Robustness design of nonlinear dynamic systems via fuzzy linear control,” IEEE Transactions on Fuzzy Systems, vol. 7, pp. 571 – 585, Oct. 1999.
[8]M. J. Er, D. H. Lin, “A New Approach for Stabilizing Nonlinear Systems with Time Delays,” International Journal of Intelligent Systems, vol. 17, pp. 289–302, 2002
[9]B. Friedland, Advanced Control System Design. Englewood Cliffs, NJ: Prentice-Hall, 1996.
[10]P. Gahinet, A. Nemirovski and A. J. Laub, LMI control toolbox user’s guide, Natick, Ma: The Mathworks Inc., 1995.
[11]Y. Gu, H.O. Wang, K. Tanaka and L.G. Bushnell, “Fuzzy control of nonlinear time-delay systems: stability and design issues,” Proceedings of the 2001, American Control Conference, 2001, vol. 6, pp. 4771 - 4776, June. 2001.
[12]A. Isidori and A. Asolfi, “Disturbance attenuation and control via measurement feedback in nonlinear systems,” IEEE Transactions on Automatic Control, vol. 37, pp. 1283–1293, Sept. 1992.
[13]A. Isidori, “ control via measurement feedback for affine nonlinear systems,” International Jouronal Robust and Nonlinear Control, 1994.
[14]H. K. Khalil, Nonlinear Systems. London, U.K.: Macmillan, 1992.
[15]E. Kim, M. Park, S. Ji, and M. Park, “A new approach to fuzzy modeling,” IEEE Transactions on Fuzzy Systems, vol. 5, pp. 328–337, Aug. 1997.
[16]B. Lehman and E. I. Verriest, “Stability of a continuous stirred reactor with delay in the recycle streams,” in Proc. 30th IEEE Conf. Dec. Contr., Brighton, U.K., pp. 1875–1876, 1991.
[17]B. Lehman, J. Bentsman, S. V. Lunel, and E. I. Verriest, “Vibrational control of nonlinear time lag systems with bounded delay: Averaging theory, stabilizability, and transient behavior,” IEEE Transactions on Automatic Control, vol. 39, pp. 898–912, May 1994.
[18]D. H. Lin, M. J. Er, “A New Approach for Stabilizing a TS Model Fuzzy System,” International Journal of Intelligent Systems, vol. 16, pp. 1321–1332, 2001.
[19]J. Lygeros, “A formal approach to fuzzy modeling,” IEEE Transactions on Fuzzy Systems, vol. 5, pp. 317–327, Aug. 1997.
[20]K. Narendra and A. M. Annaswamy, “A new adaptation law for robust adaptation without persistent excitation,” IEEE Transactions on Automatic Control, vol. AC-32, pp. 134–145, Feb. 1987.
[21]R. Palm, D. Driankov, and H. Hellendoorn, Model Based Fuzzy Control.Berlin, Germany: Springer-Verlag, 1997.
[22]M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” IEEE Transactions on Fuzzy Systems, vol. 28, pp. 15–33, Oct. 1988.
[23]M. Sugeno, Fuzzy Control. 1988 (in Japanese).
[24]K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Sysems., vol. 45, no. 2, pp. 135–156, 1992.
[25]K. Tanaka, T. Ikeda, and H.O. Wang, ”Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Transactions on Fuzzy Systems, vol. 6, pp. 250 – 265, May. 1998.
[26]T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man, Cybernetics, vol. SMC-15, pp. 116–132, Jan. 1985.
[27]T. Takagi and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 45, no. 2, pp. 135–156, 1992
[28]M.C.M Teixeira and S.H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp. 14–23. 1999.
[29]H. Wang, K. Tanaka, and M. Griffin, “Parallel distributed compensationof nonlinear systems by Takagi and Sugeno’s fuzzy model,” in Proc.FUZZY-IEEE, Yokohama, Japan, 1995, pp. 531–538.
[30]H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: Stability and design issues,” IEEE Transactions on Fuzzy Systems, vol. 4, pp. 14–23, Feb. 1996.
[31]R. J. Wang, W. W. Lin and W. J. Wang, “Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems,” IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 34, Issue: 2 , pp. 1288 - 1292 April. 2004.
[32]L. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Transactions on Systems, Man, Cybernetics, vol. SMC-3, pp. 28–44, Jan. 1973.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊