跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 10:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林崇元
研究生(外文):Chung-Yuan Lin
論文名稱:利用階層式特徵擷取及融合之視訊切割演算法
論文名稱(外文):A Video Segmentation based on Hierarchical Features Extract and Merge for Multimedia Application
指導教授:蔡宗漢蔡宗漢引用關係
指導教授(外文):Tsung-Han Tsai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:74
中文關鍵詞:高階統計視訊切割型態學濾波器
外文關鍵詞:video segmentationhigher order testmorphological filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
對於以內容為主的資訊擷取的需求愈來愈高時,以畫面為主的傳統方法以不適用。新的多媒體應用正朝向基於以物件為主的視訊,一個視訊序列指包含人們感興趣的前景部分而沒有背景的部分來支援更靈活的應用。 例如 MPEG-7已經定義出提供使用者依據物件形狀作視訊資料搜尋的標準,而在MPEG-4 中也訂定了內容性應用(content-based)的功能,它將連續的影片拆分成一到數個影像物件平面(video object planes),簡稱VOP’s ,每個VOP 代表各一個移動的物件,如此一來可以對他們加以重新組合成一部新的影片或者針對他們的形狀去作壓縮處理。由此可知,發展出能從一般影片擷取出物件的技術是非常重要的。
在這篇論文裡,我們提出以區域為主的視訊切割演算法。我們利用不同尺寸的型態學特徵擷取及高階統計來分割影像中的物件。不同尺寸的形態學特徵擷取考慮特徵的尺寸和對比。而高階統計則非常適用於偵測動量為小的物件,以判斷是否遵守高斯分布來擷取移動資訊。根據實驗結果,這種方法對不同種類視訊都能提供不錯的結果。
As the demand for content-based information retrieval goes high, traditional “frame”-based videos are not adequate. Novel multimedia applications are looking for object-based video, a video sequence has only one object without background, to support flexible utilization. For instance, MPEG-7 (Moving Picture Experts Group) has defined standardized functionality that allows users to search visual content according to object shapes. Meanwhile, MPEG-4 video standard verification model includes the content-based functionality to decompose a video sequence into one or several video object planes (VOP’s), so that each VOP represents one moving object, and they can be recomposed as a new video sequence or be compressed according to their shapes. Therefore, to develop the technique of extracting objects from plain videos is very important.
In this thesis, we proposed a region-based segmentation algorithm. It is based on multiscale morphological feature extraction followed by a higher order statistical test ( HOS ). Multiscale morphological features extraction, which takes the feature size and contrast into account for region extraction. The HOS algorithm is suited for very small moving because of the characterization, that suppress the statistic of Gaussian-distributed and enlarge the statistic of Non-Gaussian-distributed.video. It provided reasonable VOP extract procedure without simplification step and suit for very small moving objects extraction. Experimentally, this method provides good results on different kinds of sequences.
ABSTRACT
CONTENTS
LIST OF FIGURES
CHAPTER1. Introduction…………………………………..1
1.1 Motivation and objective…………………………………………………….1
1.1.1 MPEG-4 standard……………………………………………………….2
1.1.2 MPEG-7 standard……………………………………………………….4
1.2 Video segmentation………………………………………………………….5
1.3 Thesis organization…………………………………………………………..7

CHAPTER2. Background and relative research…………...9
2.1 Background…………………………………………………………………..9
2.2 Relative research……………………………………………………………12
2.2.1 Region-based combine motion field approach…………………………12
2.2.2 Region-based combine change detection approach…………………….13
2.2.3 Edge-based combine motion field approach……………………………14
2.2.4 Clustering approach…………………………………………………….15
2.2.5 Semiautomatic approach………………………………………………..15

CHAPTER3. Proposed video segmentation algorithm……16
3.1 Overview of proposed algorithm……………………………………………..16
3.1.1 Design strategy………………………………………………………….. 16
3.1.2 Flowchart of proposed algorithm…………………………………………17
3.2 Multiscale feature extraction…………………………………………………..19
3.2.1 Mathematic morphological operation…………………………………….19
3.2.2 Multiscale feature extraction flow………………………………………..26
3.2.3 Fast implementation………………………………………………………29
3.3 Higher order test………………………………………………………………33
3.3.1 background Gaussian model……………………………………………...33
3.3.2 Higher order statistical……………………………………………………34
3.3.3 Motion regularization……………………………………………………..36
3.4 Hierarchical decision…………………………………………………………..39
3.4.1 Hierarchical video model…………………………………………………39
3.4.2 Region process……………………………………………………………40
3.4.3 Implementation and flowchart……………………………………………42

CHAPTER4. Experiment result…………………………….45
4.1 Video segmentation result…………………………………………………….45
4.1.1 Subjective view of segmentation result………………………………….46
4.1.2 Segmentation result discussion…………………………………………..55
4.2 Run-time analysis………………………….………………………………….56

CHAPTER5. Conclusion…………………………………….59
REFERENCE
[1] MPEG Video Group, “The MPEG-4 video standard verification model version15.0,” ISO/IEC JTC 1/SC 29/WG 11 N3093
[2] MPEG, MPEG-7: Applications document, Tech. Rep. ISO/IEC
JTC1/SC29/WG11/w2860, MPEG, Vancouver, Canada, July 1999.
[3] P. Salembier, F. Marques,”Region-Based Representations of Image and Video: Segmentation Tools for Multimedia Services,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, no. 8, pp. 1147–1169, Dec. 1999.
[4] T. Aach and A. Kaup, “Statistical model-based change detection in moving video,” Signal Processing., vol. 31, pp. 165–180, 1993.
[5] A. Smolic´, T. Sikora, and J.-R. Ohm, “Long-term global motion estimation and its application for sprite coding, content description and segmentation,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 1227–1242, Dec. 1999.
[6] L. Vincent and P. Soille, “Watershed in digital spaces: An efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Machine Intell., vol. 13, pp. 583–598, June 1991.
[7] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 679–698, Nov. 1986.
[8] J. C. Choi, S.-W. Lee, and S.-D. Kim, “Spatio-temporal video segmentation using a joint similarity measure,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 279–286, Apr. 1997.
[9] D. Wang, “Unsupervised video segmentation based on watersheds and temporal tracking,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, pp. 539–546, Sept. 1998.
[10] Munchurl Kim, Jae Gark Choi, Daehee Kim, Hyung Lee, Myoung Ho Lee, Chieteuk Ahn, and Yo-Sung Ho, “A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatial-temporal information,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 9, no. 8,pp.1216-1226, December 1999.
[11] Thomas Meier and King N. Ngan, “Automatic segmentation of moving objects for video object plane generation,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 8, no. 5, December 1998.

[12] Thomas Meier and King N. Ngan, “Video segmentation for content-based coding,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 9, no. 8, December 1999.
[13] Changick Kim and Jenq-Neng Hwang,”Fast and Automatic Video Object Segmentation and Tracking for Content-Based Applications,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 12, no. 2, February 2002.

[14] J. Kim and T. Chen, “Low-complexity fusion of intensity, motion, texture and edge for image sequence segmentation: A neural network approach,” in IEEE Int. Workshop Neural Networks for Signal Processing, Sydney, Australia, Dec. 2000, pp. 497–606.
[15] J. Kim and T. Chen, “Multiple feature clustering for image sequence segmentation,” Pattern Recognit. Lett., vol. 22, pp. 1207–1217, Sept. 2001.
[16] Daniel Gatica-Perez, Chuang Gu, and Ming-Ting Sun,”Semantic Video Object Extraction Using Four-Band Watershed and Partition Lattice Operations,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 11, no. 5, May 2001.
[17] Daniel Gatica-Perez, Chuang Gu, and Ming-Ting Sun,”Multiview Extensive Partition Operations for Semantic Video Object Extraction,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 11, no. 7, May 2001.
[18] F. Meyer and S. Beucher, “Morphological segmentation,” J. Visual Commun. Image Representation, vol. 1, pp. 21–46, Sept. 1990.
[19] Luc Vincent,”Morphological Grayscale Reconstruction in Image Analysis: Application and Efficient Algorithms.” IEEE Transactions on Image Processing, vol. 2, no. 2, April 1993.
[20] Susanta Mukhopadhyay and Bhabatosh Chanda,”Multiscale Morphological of Gray-Scale Images,” IEEE Transactions on Image Processing, vol. 12, no. 5, May 2003.
[21] Rabi Zaibi, ”Small moving object detection in video sequences,” in Proceedings of International Conference on Acoustics, Speech, and Signal Processing, 2000.
[22] Shao-Yi Chien, Shyh-Yih Ma and Liang-Gee Chen,”Efficient Moving Object Segmentation Algorithm Using Background Registration Technique,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 12, no. 7, July 2002.
[23] Tsung-Han Tsai and Chung-Yuan Lin,” Hierarchical Decision based on Higher Order Statistical on Foreground Detection in Video Sequence,” in Proceedings of Midwest Symposium Circuit and System, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top