跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許士忠
研究生(外文):Sue-June Syu
論文名稱:電子式基因序列偵測晶片可行性之研究
論文名稱(外文):Feasibility study of gene chips based on electrical detection
指導教授:辛裕明蔡章仁蔡章仁引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:78
中文關鍵詞:微電極雜交反應金奈米粒子組抗
外文關鍵詞:DNAHybridizationMicroelectrodeImpedanceGold nanoparticle
相關次數:
  • 被引用被引用:3
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究結合了半導體固態製程、矽表面化學改質、生物 DNA 雜交反應等技術,以電阻抗變化測量取代傳統的螢光標記法,並以奈米金粒增強差異來作 DNA 序列的檢測。
首先利用固態製程的方法在矽晶片上長成一層二氧化矽薄膜,於其上以金為材料製作成對的微電極,其中包括各種不同寬度的微電極,接下來利用表面化學改質方法,將捕捉 DNA 與微電極間的二氧化矽層以共價鍵結合,再將目標 DNA 與探針 DNA 利用雜交反應結合至微電極間,最後將金奈米粒子以金硫鍵結合至 DNA 5’ 端。將上述過程處理後的晶片,使用 Keithley 4200 及 HP4284 下針在微電極上,量測其在 1 MHz 頻率下的阻抗值;總共測量數十個電極對,包括各種不同電極距離的電極對以評估電極距離對電性量測的影響。
結果顯示當微電極間距越小時,所量測出有雜交反應與無雜交反應之阻抗值差異越大,證實了此種電性量測方法不但可以分辨出是否有雜交反應的產生,還可以藉由電極間距微小化,使量測結果更為敏感。透過此種電性量測方法,可以偵測出 DNA 上的基因序列,同時製成 VLSI 的大量檢測方式,來節省成本,增加量測的正確性。
This research combines with semiconductor procedure, silicon surface chemical process and DNA hybridization etc. We utilize difference of impedance to replace traditional fluorescence label. Furthermore we utilize gold nanoparticle to enhance difference of signals for measurement of DNA sequences.
First, we use semiconductor procedure to deposit silica film at silicon wafer, and plate with a pair gold microelectrode on the chips that have various widths of electrode. Second we bond capture DNA on SiO2 film between electrodes by covalent bond. Then we bond target DNA and probe DNA between microelectrodes by DNA hybridization. Finally we bond gold nanoparticle at 5’end of DNA by Au-S bond. We use Keithley 4200 and HP4284 to probe processed chip and measure the impedance at 1 MHz. In total we probe more than ten electrodes that include various electrode widths so as to estimate effect of electrode width on electric measurement of DNA hybridization.
We find that when electrodes are more and more narrow, the differences of impedance between hybridization and nonhybridization are more and more obvious. These results verify that this electric measurement can’t only recognize occurring of DNA hybridization, but also make results more sensitive by reducing electrode widths. As the result of this method, we could detect the gene sequences of DNA, save the cost, and improve accuracy of measurement.
中文摘要……………………………………………………………………i
英文摘要……………………………………………………………………ii
誌謝…………………………………………………………………………iii
目錄…………………………………………………………………………iv
圖目錄………………………………………………………………………vii
表目錄………………………………………………………………………x
第一章 緒論………………………………………………………………1
1.1 前言………………………………………………………………1
1.2 文獻回顧…………………………………………………………6
1.3 研究動機及目的…………………………………………………10
第二章 研究背景及原理介紹……………………………………………11
2.1 DNA 基本特性及檢測原理…………………………………… 11
2.2 現行 DNA 檢測方法及原理…………………………………13
2.3 以金奈米粒子檢測 DNA 之原理……………………………15
2.3.1 金奈米粒子的特性………………………………………15
2.3.2 金奈米粒子與 DNA 結合之原理………………………16
2.4 本實驗之設計……………………………………………………17
第三章 實驗方法與步驟…………………………………………………20
3.1 微電極之製作流程介紹…………………………………………20
3.1.1 微電極光罩之設計………………………………………20
3.1.2 儀器設備…………………………………………………23
3.1.3 微電極晶片製程流程……………………………………25
3.2 化學改質與雜交反應之步驟……………………………………32
3.2.1 實驗試劑與化學藥品……………………………………32
3.2.2 實驗器材…………………………………………………35
3.2.3 表面化學改質步驟………………………………………36
3.2.4 DNA 的雜交反應與金奈米粒子之修飾………………39
3.2.5 單一錯交目標 DNA 之反應(對照組)…………………42
3.3 實驗量測步驟……………………………………………………48
3.3.1 顯微鏡觀察………………………………………………48
3.3.2 電訊號量測實驗…………………………………………49
3.3.3 資料儲存之分類…………………………………………53
3.4 觀察金奈米粒徑與電極間距對電子基因偵測影響之實驗……53
第四章 結果與討論………………………………………………………57
4.1 微電極製作結果…………………………………………………57
4.2 DNA 結合金奈米粒子之分析…………………………………59
4.3 DNA 電特性之分析……………………………………………61
4.3.1 實驗組與對照組的電訊號差異…………………………63
4.3.2 微電極寬度對電訊號的影響……………………………65
4.4 觀察金奈米粒徑與電極間距對電子基因偵測之影響…………67
第五章 結論………………………………………………………………72
參考文獻……………………………………………………………………74
附錄…………………………………………………………………………78
[1] So-Jung Park, T. Andrew Taton, and Chad A. Mirkin, “Array-Based Electrical Detection of DNA with Nanoparticle Probes”, Science, 1503-1506, Feb 22, 2002.

[2] Joon Sung Lee, Yang-Kyu Choi, Michael Pio, Jeonggi Seo and Luke P. Lee Mat. Res. Soc. Symp. Proc., “Nanogap Capacitors for Label Free DNA Analysis”, Materials Research Society, vol. 729, c 2002.

[3] 陳克強, 單一特定DNA分子之偵測,
國立台北科技大學化學工程系碩士班論文, 2003.

[4] 蔡宜樺, 應用奈米電極檢測支單一核酸多型性生物晶片
國立台灣大學機械工程學研究所碩士論文, 2003.

[5] James Baker-Jarvis, Chriss A. Jones, Bill Riddle, ”electrical properties and dielectric relaxation of DNA in solution”, NIST Technical note, U.S. Departmeny of commerce 1998.

[6] 許景翔, 金奈米粒子合成及表面化學改質與其應用於 DNA 分子雜交動力學之探討, 國立中央大學化學工程與材料工程研究所碩士論文, 2003.

[7] Elena Pirogova, George P.Simon, Irena Cosic, “Investigation of the applicability of dielectric relaxation properties of amino acid solutions within the resonant recognition model”, IEEE TRANSACTION ON NANOBIOSCIENCE, VOL.2, NO. 2, JUNE 2003.

[8] H. Edward Ayliffe, A. Bruno Frazier, Member, IEEE, and R.D. Rabbitt, “Electric impedance spectroscopy using microchannels with integrated metal electrodes”, IEEE JOURNAL OF MICROELECTROMECHANICAL SYSTEM, VOL.8, NO.1, MARCH 1999.

[9] Joon Sung Lee, Yang-Kyu Choi, Luke P. Lee, “Label-free dielectric detection of DNA hybridization by nanogap junction arrays”,
University of California at Berkeley, California 94720, 2002.

[10] Jason E. Gestwicki, Helen V. Hsieh, J. Bruce Pitner, “Using Receptor conformational change to detect low molecular weight analytes by surface plasmon resonance”, Anal. Chem. 73, 5732-5737, 2001.

[11] P.Arena, M. Bucolo, L.Fortuna, L.Occhipinti, “Cellular neural networks for real-time DNA microarray analysis”, IEEE ENGINEERING IN MEDICINE AND BIOLOGY, March/April, 2002.

[12] Joon Sung Lee, Sebaek Oh, Yang-Kyu Choi, Luke P.Lee, “Label-free dielectric detection of DNA hybridization by nanoelectrodes”, Berkeley sensor and actuator center, Department of Bioengineering, University of California at Berkeley, 2002.

[13] Joon Sung Lee, Sebaek Oh, Yang-Kyu Choi, and Luke P.Lee, “Nanogap junction arrays for label-free DNA hybridization detection”, University of California at Berkeley, Berkeley, CA 94720A, 2002.

[14] Joseph Wang, Abdel-Nasser Kawde, “Amplified label-free , electrical detection of DNA hybridization”, Analyst, 127, 383-386, 2002.

[15] Juntao Xu, Sheila A.Grant, Robert L. Pastel, “Laser-Guided direct writing: a novel method to deposit biomolecules for biosensors arrays”, IEEE TRANSATIONS ON BIOMEDICAL ENGINEERING, VOL.50, NO.1, JANUARY 2003.

[16] Hans-Werner Fink, Christian Schonenberger, “Electrical conduction through DNA molecules”, Macmillan Magazines Ltd, 1999.

[17] A. Yu. Kasumov, M. Kociak, S. Gueron, B. Reulet, V. T. Volkov, D. V. Klinov, H. Bouchiat, “Proximity-induced superconductivity in DNA “, Science, VOL 291, 12 January 2001.

[18] Xingyan Sun, Pingang He, Shenghui Liu, Jiannong Ye, Yuzhi Fang, “Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications”, Talanta, 47 487-495, 1998.

[19] Joseph Wang, Ronen Polsky, Danke Xu, “Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization”, Langmuir, 17, 5739-5741, 2001.

[20] Joseph Wang, Peter E. Nielsen, Mian Jiang, Xiaohua Cai, Joao Roberto Fernandes, Douglas H.Grant, Mehmet Ozsoz, Asher Beglieter, Michael Mowat, “Mismatch-sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance”, Anal. Chem. Vol.69, 5200-5202 No.24, December 15, 1997.

[21] ” http://www.biochip.org.tw/BIOCHIP.asp”, 台灣生物晶片協會官方網站

[22] Linda A Chrisey, “Covalent attachment of synthetic DNA to self-assembled monolayer films, Nucleic Acids Reaseach” Vol.24, No.15, 3031-3039,1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top