跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 05:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:丁肇敏
研究生(外文):Chao-Min Ting
論文名稱:氮化銦鎵系列多層量子井之光學特性探討
論文名稱(外文):Optical characterization of InGaN-based Multiple Quantum Well Structures
指導教授:綦振瀛
指導教授(外文):Jen-Inn Chyi
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:63
中文關鍵詞:氮化銦鎵量子井
外文關鍵詞:InGaN
相關次數:
  • 被引用被引用:3
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以Optical pumping量測氮化銦鎵/氮化(鋁)鎵多層量子井之光增益頻譜,並以光激光譜量測與簡單的理論計算來分析驗證我們實驗室所成長磊晶的品質及判定結構設計之正確性。
針對不同層數量子井來探討活化能所扮演的角色與光增益頻譜的比較。發現當量子井層數增加時,活化能值提高。由於量子井層數較多,整體光場侷限與增益介質增加造成在相同激發強度下有好的光增益表現。
  使用氮化鋁鎵作為位障層在自發性光譜中強度較強,代表了提高載子侷限。但是應用在雷射二極體中卻使得整體光場侷限因子下降,因此整體模組增益值表現不如預期,需要較高的激發強度與較長的共振腔才可達到雷射現象。
第一章 序論
第二章 氮化鎵及光增益相關理論
2.1 簡介……………………………………………………………......3
2.2 極化場…………………………………………………………......4
2.3 雷射增益量測簡介……………………………………………......9
2.4 光激發量測………………………………………………………12
2.5 光增益物理機制討論……………………………………………14
第三章 實驗方法
3.1 簡介………………………………………………………………16
3.2 氮化銦鎵/氮化(鋁)鎵多層量子井結構成長……………………16
3.3 光譜量測裝置……………………………………………………18
第四章 不同層數量子井結構之光性分析
4.1 簡介………………………………………………………………23
4.2 活化能在不同層數量子井之扮演角色與分析…………………24
4.3 激發光譜特性研究………………………………………………29
4.4 不同層數之量子井對光增益影響………………………………33
4.5 本章總結…………………………………………………………37
第五章 改變量子井能帶結構之光性分析
5.1 簡介……………………………………………………………...38
5.2 能帶結構改變之量子井極化場效應……………………………39
5.3 能帶結構改變對量子井光場侷限效應…………………………45
5.4 本章總結…………………………………………………………51
第六章 結論
參考資料
[1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M Sano, and K. Chocho, Jpn. J. Appl. Phys.36,L1568 (1997).
[2] M. Vehse, P. Michler, J. Gotowski, S. Figge, D. Hommel, H, Selke, S. Keller, and S. P. Denbarrs, “ Influence of composition and well-width fluctuation on the optical gain in (In,Ga)N multiple quantum wells” Semiconductor Science Technology. 19 p406 (2001)
[3] M. Vehse, P. Michler, O. Lange, M. Röwe, J. Gotowski, “Optical gain and saturation in nitride-based laser structures” Appl. Phys. Lett. Vol. 79 No. 12 p1763 (2001)
[4] M. Vehse, P. Michler, I. Goösling, M. Röwe, J. Gotowski, “Influence of the barrier height on carrier recombination and transparency density in GaN-based laser structures” Appl. Phys. Lett. Vol. 80 No. 5 p755 (2002)
[5] M. Röwe, P. Michler, J. Gotowski, V. Kümmler, A. Lell, and V. Härle, “Influence of the carrier density on the optical gain and refractive index changes in InGaN laser structures” Phys. Stat. sol. (a) No. 1 p135 (2003)
[6] 賴志遠 Ⅲ族半導體的極化電場效應 國立中央大學物理學系博士論文 中華民國92年7月
[7] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “ Two-dimensional electron gases induced by spontaneous and Piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures ” J. Appl. Phys. Vol.85 No. 6 p3222 (1999).
[8] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in InGaN Strained Quantum Wells” Jpn. J. Appl. Phys.36,L382 (1997).
[9] J. L. Sanchez-Rojas, J. A. Garrido, and E. Muñoz, “Tailoring of internal fields in AlGaN/GaN and InGaN/GaN heterostructure devices” Phys. Rev. Lett. Vol. 61 No. 4 p2773 (2000)
[10] B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers” J. Appl. Phys. Vol. 46 No. 3 pp.1299-1306 (1975)
[11] C. H. Herny, R. A. Logan, and F. R. Merritt, ”Measurement of gain and absorption in AlGaAs buried heterostructure lasers” J. Appl. Phys. Vol. 51 No. 3 p3042 (1980)
[12] A. Oster, G. Erbert, and H. Wenzel, “Gain spectra measurements by variable stripe length method with current injection” Electron. Lett. Vol. 33 No. 4 p864 (1997)
[13] J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-device optical gain and internal loss using multisection device” Appl. Phys. Lett. Vol. 75 No. 17 p2527 (1999)
[14] R. Dingle, “Stimulated emission and laser action in Gallium Nitride” Appl. Phys. Lett. Vol.19 No. 1 p5 (1971)
[15] K. L. Shaklee, R. F. Leheny, “Direct determination of optical gain in semiconductor crystals” Appl. Phys. Lett. Vol.18 No.1 p475 (1971)
[16] M. Röwe, M. Vehse, P. Michler, J. Gotowski, S. Heppel, and A. Handleiter
“Optical gain, gain saturation, and waveguiding in group Ⅲ-Nitride hererostructures” Phys. Stat. sol. (c) No. 6 p1860 (2003)
[17] Shun Lien Chuang, “Physics of optoelectronic devices” p351
[18] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura,”Spontanesous of localized exciton in InGaN single and multiple quantum wells structures” Appl. Phys. Lett. Vol. 69 p4188 (1996)
[19] Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, Phys. Rev. B55, R1938 (1997)
[20] K. Domen, A. Kuramata, R. Soejima, K. Horino, S.Kubota, and Tanahashi, “Lasing mechanism of InGaN-GaN-AlGaN MQW laser diode grown on SiC by low-pressure metal-organic vapor phase eiptaxy” IEEE. J. Selected Topic in quantum electronics, Vol. 4 No. 3 p490 (1998)
[21] D. K. Schroder, “Semiconductor material and device characterization” P623-627
[22] 陳冠廷 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析 國立中央大學電機工程學系 碩士論文 中華民國90年7月
[23] Dong-Joon Kim, Yong-Te Moon, Keun-Man Song, Chel-Jong Choi, Young-Woo Ok, Tae-Yeon Seong, and Seong-Ju Park, “Structural and optical properties of InGaN/GaN multiple quantum well:The effect of the number of InGaN/GaN pairs” J. Crystal. Growth 221 p.368 (2000)
[24] L. Nistor, H. Bender, A. Vantomme, M. F. Wu, J. Van Landuyt, K. P. O'Donnell, R. Martin, K. Jacobs, and I. Moerman, “Direct evidence of spontaneous quantum dot formation in a thick InGaN epilayer” Appl. Phys. Lett. Vol. 77 No. 4 p507 (2000)
[25] Yong-Hoon Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells” Appl. Phys. Lett. Vol. 73 No. 10 p1370 (1998)
[26] D. G. Chtchekine, “Temperature-varied photoluminescence and magnetospectroscopy study of near-band-edge emission in GaN” Phys. Rev B, vol. 63 p 125211 (2001)
[27] K. L. Teo, J. S. Colton, P. Y. Yu, “An analysis of temperature dependent photoluminescence lines shapes in InGaN” Appl. Phys. Lett. Vol. 73 No. 12 p1679 (1998)
[28] Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, and S. Y. Tong “Thermal redistribution of localized exciton and its effect on the luminescence band in InGaN ternary alloys” Appl. Phys. Lett. Vol. 79 No. 12 p1810 (2001)
[29] 李政鴻 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析 國立中央大學 電機工程學系碩士論文 中華民國91年6月
[30] T. J. Schmidt, S. Bydnik, Yong-Hoon Cho, A. J. Fischer, and J. J. Song, “Stimulated emission of InGaN/GaN multiple quantum well:Excitation length and excitation density dependence” Appl. Phys. Lett. Vol. 73 No. 25 p3689 (1998)
[31] J. F. Muth, J. D. Brown, M. A. Johnson, Zhonghai Yu, R. M. Kolbas, J. W. Cook, and J. F. Schetzina, “Absorption coefficient and refractive index of GaN, AlN and AlGaN alloy” MRS International J. Nitride Semicond. Res. 4S1, G5.2 (1999)
[32] A. Hangleiter, G. Frankowsky, V. Härle, and F. Scholz,” Optical gain in the nitride:are there difference to other Ⅲ-Ⅴ semiconductor?”Material Science& Engineering B (1997)
[33] D. Wisemann, I. Brener, and L. Pfeffer, “Gain spectra and stimulated emission in epitaxial (In,Al)GaN thin films” Appl. Phys. Lett. Vol. 69 No. 22 p3384 (1996)
[34] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light emitting diode” IEEE J. Selected topics in Quantum electron. Vol. 8 No. 4 (2002)
[35] Jianping Zhang, Y. Yang, G. Simin, M. Shatalov, and M.A. Khan, “Enhanced luminescence in InGaN multiple quantum wells with quaternary AlInGaN barriers” Appl. Phys. Lett. Vol. 77 No. 17 p2688 (2000)
[36] H. S. Kim, R. A. Mair, J. Li, J. Y. Lin and H. X. Jiang, “Time-resolved photoluminescence studies of AlxGa1-xN alloys” Appl. Phys. Lett. Vol. 76 No. 10 p1252 (2000)
[37] J. Li, K. B. Nam, J. Y. Lin, and H. X. Jiang “Optical and electrical properties of Al-rich alloy” Appl. Phys. Lett. Vol. 79 No. 20 p3245 (2001)
[38] Martin S. Brandt, Roland Zeisel, Sebastian T. B. Gönnenwein, Martin W. Bayerl, and Martin Stutzmann, “DX behavior of silicon donors in AlGaN alloy” phys. stat. sol. (b) 235 No.3 p13 (2003)
[39] M. J. Bergmann, and H. C. Casey, “Optical field calculation for lossy multiple-layer AlxGa1-xN/InxGa1-xN laser diode” J. Appl. Phys. Vol.84 No. 3 p1196 (1998)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top