跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 12:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡昌孝
研究生(外文):Chang-Hsiao Tsai
論文名稱:抗雜訊之邏輯元件設計與實現
論文名稱(外文):Design and Implementation of Low Jitter Logic Blocks
指導教授:周世傑周世傑引用關係
指導教授(外文):Shyh-Jye Jou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:68
中文關鍵詞:時間抖動
外文關鍵詞:jitter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文,我首先分析數位電路的時間抖動特性,且將抖動的成因分成四類:包含了電源訊號的抖動,基板的雜訊,時脈的不穩定性,還有輸入資料相關聯性的抖動。
我們在經常使用的資料暫存器與多工器中提出了一種較少時間抖動的架構,再加上調整尺寸與佈局方式可以降低時間抖動。一般我們量測到在輸出波形的時間抖動的量值都是由數種時間抖動的成因組成。針對資料暫存器,我們提出了一個可以累積除了時脈不穩定性因素外的所有成因造成的時間抖動量值之電路架構,由此電路我們可以在輸出波形處,量測到大部分是由除了時脈不穩定性因素外的所有成因造成的時間抖動量值。我們使用台積電0.18微米製程並針對抗雜訊加以設計模擬的結果,對於資料暫存器峰對峰的時間抖動量值只有1.17兆秒,對於多工器峰對峰的時間抖動量值只有0.04兆秒。
In the thesis, we first analyze the jitter of digital circuits. We divide the jitter source into four categories: vdd / gnd bounce jitter, substrate noise jitter, data dependent jitter, and clock jitter.
For the frequently used flip-flop and MUX, we propose an architecture that has the least jitter. Also, sizing and layout techniques are used to decrease the jitter. In general, the measurement results of output waveform jitter consists of several kinds of jitter. For the D-flip-flop we propose an architecture that could accumulate the output jitter, except for clock jitter so that the output waveform mainly consist of output jitter, except for clock jitter. Design results show that the low-jitter architecture can achieve only 1.17ps and 0.04ps (peak-peak) for D-flip-flop and MUX respectively, using TSMC 0.18um CMOS technology.
Chapter 1 Introduction 1
1.1 Introduction of High-Speed / Low Jitter Digital Design Technology 1
1.2 Motivations and Goals 3
1.3 Thesis Organization 3
Chapter 2 Jitter Analysis and Source of Jitter 5
2.1 Random Jitter and Deterministic Jitter 5
2.2 Jitter Analysis 6
2.3 Source of Jitter in Digital Logic Circuits 8
Chapter 3 Low Jitter TSPC D-flip-flop 11
3.1 D-flip-flop Overview 11
3.2 Analysis and Comparisons of TSPC D-flip-flops 14
3.3 Low Jitter TSPC D-flip-flop 17
3.3.1 Input Data Dependent Jitter Effect on TSPC Output Jitter 17
3.3.2 Clock Jitter Effect on TSPC Output Jitter 27
3.3.3 Vdd / Gnd Bounce Effect on TSPC Output Jitter 31
3.3.4 Substrate Noise Effect on TSPC Output Jitter 32
3.4 The Design, Implementation, and Result of The Circuit 33
Chapter 4 Low Jitter MUX 41
4.1 MUX Overview 41
4.2 Analysis and Comparisons of MUX21 and MUX41 45
4.3 Low Jitter MUX 50
4.3.1 Data Dependent Jitter Effect on MUX Output Jitter 50
4.3.2 Vdd / Gnd Bounce Effect on MUX Output Jitter 52
4.3.3 Substrate Noise Effect on MUX Output Jitter 53
4.4 Summary 55
Chapter 5 Conclusions 56

Reference 57
[1] Ji-Ren Y., Karlsson I., and C. Svensson, "A true single-phase-clock dynamic CMOS circuit technique", IEEE J. Solid-State Circuits, Vol22, pp.899-901, Oct 1987.
[2] Fiber Channel.Methodologies for jitter Specification, T11.2/Project 1230/Rev 10, June. 1999.
[3] M. Shimanouchi, "An approach to consistent jitter modeling for various jitter aspects and measurement methods", Proceedings. International Test Conference, pp.848-857, Nov. 2001.
[4] J. Yuan and C. Svensson, "New single-clock CMOS latches and flipflops with improved speed and power savings", IEEE J. Solid-State Circuits, Vol32 , pp.62-69, Jan. 1997.
[5] C. Piguet, “Logic circuit for bistable d-dynamic flip-flop.”, United States Patent, NO.4,057,741, November 1997.
[6] Gorre Verlag Konstanz Hartung., “The Design of High.Speed Dynamic CMOS Circuits for VLSI ,” Robert Rogenmoser, 1996.
[7] J. Yuan and C. Svensson, "Pushing the limits of standard CMOS", IEEE Spectrum, Vol28, pp.52-53, Feb. 1991
[8] H. Oguey and E. Vittoz, “CODYMOS Frequency dviders achive low power consumption and high frequency.” Electronic Letter, pp.386-387, August 1973.
[9] R. Rogenmoser, Q. Huang, F. Piazza, "1.57 GHz asynchronous and 1.4 GHz dual-modulus 1.2 μm CMOS prescalers" , IEEE Proceedings Custom Integrated Circuits Conference, pp.387-390, May 1994.
[10] R. Rogenmoser, N. Felber, Q. Huang, and W. Fichtner, "1.16 GHz dual-modulus 1.2 μm CMOS prescaler", IEEE Proceedings Custom Integrated Circuits Conference, pp.27.6.1-27.6.4 , May 1993
[11] B.Razavi,"Design of Integrated Circuits for Optical Communications," Mcgraw-hill publishers, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top