|
References [1] P. W. Bates, X. Chen, and A. Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35 (2003), pp. 520-546. [2] J. W. Cahn, J. Mallet-Paret, and E. S. Van Vleck, Traveling wave solutions for systems of ODE's on a two-dimensional spatial lattice, SIAM J. Appl. Math., 59 (1999), pp. 455-493. [3] S.-N. Chow, J. Mallet-Paret, and W. Shen, Traveling waves in lattice dynamical systems, J. Diff. Eqns., 149 (1998), pp. 248-291. [4] L. O. Chua, CNN: A Paradigm for Complexity, World Scientific Series on Nonlinear Science, Series A, Vol. 31, World Scientific, Singapore, 1998. [5] L. O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits Syst., 40 (1993), pp. 147-156. [6] L. O. Chua and L. Yang, Cellular neural networks: theory, IEEE Trans. Circuits Syst., 35 (1988), pp. 1257-1272. [7] L. O. Chua and L. Yang, Cellular neural networks: applications, IEEE Trans. Circuits Syst., 35 (1988), pp. 1273-1290. [8] T. Erneux and G. Nicolis, Propagation waves in discrete bistable reaction-diffusion systems, Physica D, 67 (1993), pp. 237-244. [9] I. Gyori and G. Ladas, Oscillating Theory of Delay Differential Equations with Applications, Oxford University Press, Oxford, 1991. [10] C.-H. Hsu and S.-S. Lin, Existence and multiplicity of traveling waves in a lattice dynamical system, J. Diff. Eqns., 164 (2000), pp. 431-450. [11] C.-H. Hsu, S.-S. Lin, and W. Shen, Traveling waves in cellular neural networks, Internat. J. Bifur. and Chaos, 9 (1999), pp. 1307-1319. [12] C.-H. Hsu and S.-Y. Yang, On camel-like traveling wave solutions in cellular neural networks, J. Diff. Eqns., 196 (2004), pp. 481-514. [13] C.-H. Hsu and S.-Y. Yang, Wave propagation in RTD-based cellular neural networks, to appear in J. Diff. Eqns. [14] C.-H. Hsu and S.-Y. Yang, Structure of a class of traveling waves in delayed cellular neural networks, submitted for publication, 2002. [15] J. Juang and S.-S. Lin, Cellular neural networks: mosaic pattern and spatial chaos, SIAM J. Appl. Math., 60 (2000), pp. 891-915. [16] J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), pp. 556-572. [17] S.-S. Lin and C.-W. Shih, Complete stability for standard cellular neural networks, Internat. J. Bifur. and Chaos, 9 (1999), pp. 909-918. [18] S. Ma, X. Liao, and J. Wu, Traveling wave solutions for planar lattice differential systems with applications to neural networks, J. Diff. Eqns., 182 (2002), pp. 269-297. [19] J. Mallet-Paret, The global structure of traveling waves in spatial discrete dynamical systems, J. Dynam. Diff. Eqns., 11 (1999), pp. 49-127. [20] W. Shen, Traveling waves in time almost periodic structure governed by bistable nonlinearities I. stability and uniqueness, J. Diff. Eqns., 159 (1999), pp. 1-54. [21] W. Shen, Traveling waves in time almost periodic structure governed by bistable nonlinearities II. existence, J. Diff. Eqns., 159 (1999), pp. 55-101. [22] C.-W. Shih, Complete stability for a class of cellular neural networks, {it Internat. J. Bifur. and Chaos}, 9 (2001), pp. 169-177. [23] P. Thiran, Dynamics and Self-Organization of Locally Coupled Neural Networks, Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 1997. [24] P. Thiran, K. R. Crounse, L. O. Chua, and M. Hasler, Pattern formation properties of autonomous cellular neural networks, IEEE Trans. Circuit Syst., 42 (1995), pp. 757-774. [25] F. Werblin, T. Roska, and L. O. Chua, The analogic cellular neural network as a bionic eye, Internat. J. Circuit Theory Appl., 23 (1994), pp. 541-569. [26] P. Weng and J. Wu, Deformation of traveling waves in delayed cellular neural networks, Internat. J. Bifur. and Chaos, 13 (2003), pp. 797-813. [27] J. Wu and X. Zou, Asymptotical and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations, J. Diff. Eqns., 135 (1997), pp. 315-357. [28] B. Zinner, Existence of traveling wavefront solutions for discrete Nagumo equation, {it J. Diff. Eqns.}, 96 (1992), pp. 1-27. [29] B. Zinner, G. Harris, and W. Hudson, Traveling wavefronts for the discrete Fisher's equation, J. Diff. Eqns., 105 (1993), pp. 46-62.
|