# 臺灣博碩士論文加值系統

(3.236.50.201) 您好！臺灣時間：2021/08/02 00:21

:::

### 詳目顯示

:

• 被引用:0
• 點閱:164
• 評分:
• 下載:17
• 書目收藏:0
 我們提出以半母數混合模型(Semiparametric Model)來分析死亡時間(Failure Time)和治癒時間(Cure Time)的混合資料。在這模型中我們使用無母數最大概然估計量(Nonparametric Maximum Likelihood Estimate (NPMLE))來估計死亡率(Case Fatality Rate)、回歸參數(Regression Parameter)和累積風險函數(Cumulative Hazard Function)。首先、在適當的條件下建立模型參數的Identifiability。接著證明最大概然估計量的存在性並說明其為一積分方程之解。利用此積分方程及Empirical Process Theory，證得其漸近一致性(Asymptotic Consistency)。 接著，我們利用我們所得到的積分方程和得分函數(Score Function)提出一個演算法來計算無母數最大概然估計量。使用此演算法來做統計模擬，得到了令人滿意的結果，使我們確認此模型和演算法的適切性。最後，我們使用這個模型來分析台灣疾病管制局(CDC Taiwan)所提供嚴重急性呼吸道症候群(SARS)的資料。經由我們的演算法對這些資料計算所得到的結果，對台灣嚴重急性呼吸道症候群這個傳染病建構了一個應用範圍廣泛的成果。
 In this paper, we study nonparametric maximum likelihood estimators (NPMLE) in a semiparametric mixture model for cure time and failure time. This model is motivated by the study of fatality rate, time from onset to discharge and time from onset to death for SARS (severe acute respiratory syndrome) patients. SARS patients are kept in isolation until recovery or death.Because of no known treatment or preventive measure, it is important to know the case fatality rate andthe distribution of admission-to-death and admission-to-discharge for the study of transmission dynamicsand for better planning of patient care capacity. The identifiability of the parameters, the existence of NPMLE, and their asymptotical consistency are established under certain regularity conditions. We also propose a self-consistency based algorithm for computing the nonparametric maximum likelihood estimatesin this model.The performance of this method is successfully demonstrated in a simulation study and in the analysis of Taiwan SARS data.
 1. Introduction 12. Nonparametric Maximum Likelihood Estimate 53. Asymptotic Consistency of NPMLE 134. An Algorithm 215. A Simulation Study 236. Application to Taiwan SARS Data 247. Concluding Remarks 25 Appendix 30 References 37
 [1] Andersen, P. K., Borgan, \$O\$., Gill, R. D. and Keiding, N. (1993). Statistical models based on counting processes. Springer, New York.[2] Bickel, P. J., Klaassen, C., Ritov, Y. and Wellner, J. (1993). Efficient and adaptive estimation for semi-parametric models. Baltimore, MD: Johns Hopkins University Press.[3] Chang, I. S., Hsiung, C. A., Wang, M. C., and Wen, C. C. (2004a). An asymptotic theory for the nonparametric maximum likelihood estimator in theCox-gene model. (Revised for Bernoulli).[4] Chang, I. S., Hsiung, C. A., Wen, C. C. , and Wu, Y. J. (2004b). Isotonic regression and concave regression with random Bernstein polynomials. (Revised for Biometrika).[5] Chen, M. H., Ibrahim, J. G., and Sinha, D. (1999). A new Bayesian model forsurvival data with a surviving fraction. Journal of American Statistical Association 94, 909-919.[6] Chen, M. H. and Ibrahim, J. G. (2001). Maximum likelihood methods for curerate models with missing covariates. Biometrics 57, 43-52.[7] Donnelly, C. A., Ghanl, A. C., Leung, G. M., Hedley, A. J., Fraser, C., Rifey, S., Abu-Radded, L. J., Ho, L. M., Thach, T. Q., Chau, P., Chan, K. P., Lam, T. H., Tse, L. Y., Tsang, T., Llu, S. H., Kong, J. H. B., Lau, E. M. C., Ferguson, N. M., and Anderson, R. M. (2003). Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Knog. Lancet 361, 1761-1766.[8] Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York: Chapman & Hall.[9] Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long term survivors. Biometrics 38, 1041-1046.[10] Farewell, V. T. (1986). Mixture models in survival analysis: are they worth the risk? Can. J. Statist. 14, 257-256.[11] Goldman, A. I. (1984). Survivorship analysis when cure is a possibility: A Monte Carlo study. Statistics in Medicine 3, 153-163.[12] Greenhouse, J. B. and Wolfe, R. A. (1984). A competing risks derivation of a mixture model for the analysis of survival data. Communications in Statistics-Theory and Methods 13, 3133-3154.[13] Kosorok, M., Lee, B., and Fine, J. (2003). Robust inference for proportional hazards univariate frailty regression models. To appear, Ann. statist.[14] Kuk, A. Y. C. (1992). A semiparametric mixture model for the analysis of competing risks data. Australian Journal of Statistics 34, 169-180.[15] Kuk, A. Y. C., and Chen, C. (1992). A mixture model combining logistic regression with proportional hazards regression. Biometrika 79, 531-541.[16] Li, C.-S., Taylor, M. G., and Judy, P. S. (2001). Identifiability of cure models. Statistics & Probability Letters 54, 389-395.[17] Lingappa, J. R., McDonald, L. C., Simone, P., and Parashar, U. D. (2004). Wresting SARS from uncertainty. Emerg Infect. Dis. URL: http://www.cdc.gov/ncidod/EID/vol10n02/03-1032.thm[18] Lorentz, C. G. (1986). Bernstein Polynomials, Chelsea, New York.[19] Murphy, S. A. (1994) Consistency in a proportional hazardsmodel incorporating a random effect. Ann. Statist., 22, 712-731.[20] Murphy, S. A., Rossini, A. J. and van der Vaart, A. W. (1997)Maximum likelihood estimation in the proportional odds model. J. Amer. Statist. Assoc., 92, 968-976.[21] Parner, E. (1998) Asymptotic theory for the correlated gamma-frailty model. Ann. Statist., 26, 183-214.[22] Peng, Y. (2003). Fitting semiparametric cure models. Computational statistics & data analysis 41, 481-490.[23] Peng, Y., and Dear, K. B. G. (2000). A nonparametric mixture model for curerate estimation. Biometrics 56, 237-243.[24] Rudin, W. (1976) Principles of mathematical analysis. 3ed. McGraw-Hill, New York.[25] Sy, J. P., and Taylor, J. M. G. (2000). Estimation in a Cox proportional hazards cure model. Biometrics 56, 227-236.[26] Taylor, J. M. G. (1995). Semi-parametric estimation in failure time mixture models, Biometrics 51, 899-907.[27] Tsodikov, A. (1998). A proportional hazard model taking account of long-term survivors. Biometrics 54, 1508-1516.[28] van der Vaart, A. W. and Wellner, J. A. (1996) Weak Convergence and Empirical Processes. Springer Verlag, New York.[29] van der Vaart, A. W. (1998) Asymptotic Statistics. Cambridge University Press, Cambridge.[30] Yamaguchi, K. (1992). Accelerated failure-time regression models with a regression model of surviving fraction: An application to the analysis of "permanent employment" in Japan. Journal of the American Statistical Association 87, 284-292.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 1 陳怡舟(1999)。淺談中、高強度技擊性運動之能量代謝。中華體育12卷5期, 7-54。 2 沈子斐（2002）。探討血紅素、血漿肌酸激酶及血尿素氮在三週武術訓練之應用。大專體育學刊，4（2）, 141-48。

 1 數據依賴誤差之階梯函數迴歸的貝氏方法 2 病患就醫行為在SARS前後的改變－以高雄縣市醫院門診病患為例 3 我國「防疫政策」之研究─以SARS危機管理及因應策略為例 4 對雙截切資料在半母數模式下之統計分析 5 現狀家庭數據在相關伽瑪致病傾向模型之無母數估計 6 卡氏(Cox)-基因模式中無母數估計之近似理論 7 限制最大概似法和動差法於個體藥劑生體相等性評估之比較 8 Semiparametric Tests for Nonstationary Data 9 凱利準則及其在賭博上的應用 10 資訊系統開發團隊內的衝突、溝通及績效 11 以SARS經驗推估禽流感爆發對醫療利用可能影響之初探 12 利用Bernstein多項式來研究二元迴歸 13 從台灣防疫制度沿革,看SARS到禽流感的防疫政策 14 隨機右設限數據之風險率的貝氏估計方法 15 GEE分析散瞳劑對遏止近視惡化之功效和鼻咽癌家族群聚

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室