跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉宏仁
研究生(外文):Hong-Jen Liu
論文名稱:探討二元觸媒(Pt-Ru)應用電弧電漿法合成奈米碳管之製程研究
論文名稱(外文):Carbon nanotubes produced by arc discharge with bimetallic catalyst (Pt-Ru)
指導教授:曾重仁
指導教授(外文):Chung-jen Tseng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:107
中文關鍵詞:直接甲醇燃料電池奈米碳管拉曼光譜儀
外文關鍵詞:Raman SpectraCarbon NanotubeDirect Methanol Fuel Cell
相關次數:
  • 被引用被引用:3
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本論文是藉由Pt或Pt-Ru做為電弧電漿法合成奈米碳管的觸媒,並期望合成的奈米碳管中含有Pt或Pt-Ru的觸媒,可以直接供給直接甲醇型燃料電池使用。並探討改變操作電流、觸媒比例及成份等不同的實驗參數影響下,觀察其合成的效果。本實驗中,主要使用SEM對陰極沈積物中做初步的分析,觀察奈米碳管、非晶的碳及碳微粒生成的情況。再以TEM觀察,分析Pt或Pt-Ru觸媒分析的情況。最後,由拉曼光譜儀判斷碳管的特性。
Pt並不是Fe、Co及Ni為合成奈米碳管常用的觸媒,因此,實驗中,我們可以發現在一些參數中,雖然在陰極的石墨棒中有沈積物,但經SEM的觀察後,卻發現無奈米碳管生成,但在操作電流為150A下,皆可發現奈米碳管。使用Pt-Ru的二元觸媒,在所有實驗的參數中,陰極石墨棒的沈積物,經由SEM的觀察,皆可發現奈米管的生成。因此,使用Pt-Ru的二元觸媒其合成的效果明顯優於Pt的觸媒。
增加Pt或Pt-Ru的觸媒重量百分比,不但不會增加奈米碳管的產量,更經由SEM照片的觀察中,可發現產生許多的碳微粒和非晶的碳,我們可以由拉曼光譜的結果發現,非晶的碳愈多,D-Band的強度愈強,會明顯影響奈米碳管的品質。
操作電流愈大,D-Band及G-Band愈往低頻移動,因此,奈米碳管的結構產生了改變。適當的操作電流對合成奈米碳管是十分重要的,操作電流太低,生長的速度慢,且非晶質的碳多,操作電流太高,容易發生短路的現像,並且石墨化的程度低,由實驗的結果可得最佳的操作電流約為100A。
In this study, we use Pt and Pt-Ru catalysts for the arc discharge method to synthesize carbon nanotube (CNT), hoping that there will be Pt or Pt-Ru catalysts on the carbon nanotube. So the products can be used in the direct methanol fuel cell directly. In the experiments, we changed the operating current, catalyst loading and the composition of the catalyst. The CNTs thus produced are characterized by SEM, TEM and Raman spectroscopy. SEM results are used to characterize the CNT formation and shape. TEM results are used to observe the catalyst on the CNTs. Raman spectra are used to characterize the purity of the CNTs.
Pt is not as useful as Fe, Co, Ni in synthesizing carbon nanotube. In this work, we did not find CNTs in a few cases, especially when the synthesizing current is low. But with 150 A, we find CNTs in all cases. Also, if we use Pt-Ru instead of Pt, we can find CNTs in all cases. So Pt-Ru catalyst is more effective than Pt in catalyzing CNT formation.
Increasing the loading of the Pt or Pt-Ru does not increase the CNT yield. According to the SEM results, we find more amorphous carbons and particles as the catalyst loading is increased. In the Raman spectra, we find the D-Band intensity is also increased, and therefore the value of IG/ID decreases. So the catalyst loading should not be too high.
On the other hand, as the synthesizing current is increased, the D-Band and G-Band peaks move to lower frequencies. The micro structures of the Multiwalled carbon nanotubes may be different due to different energy inputs. Suitable operating current is very important to carbon nanotube. With low synthesizing current, there is more amorphous carbon and carbon particles. The value of IG/ID increases as the synthesizing current is increased from 80 A to 100 A, and then decreases as the synthesizing current is increased from 100 A to A.
中文摘要…………………………………………………………………I
英文摘要………………………………………………………………...II
目錄……………………………………………………………………..IV
表目錄………………………………………………………………….VII
圖目錄………………………………………………………………...VIII
第一章、緒論……………………………………………………………1
1-1、直接甲醇燃料電池的基本原理……………….………2
1-2、直接甲醇型燃料觸媒的反應過程……………………..3
1-3、直接甲醇燃料電池毒化原因的探討…………………..4
1-4、研究背景與動機………………………………………..6
第二章、文獻回顧………………………………………………………..8
2-1、奈米碳管發展歷史……………………………………..8
2-2、奈米碳管的性質……………………………………….10
2-3、奈米碳管的結構……………………………………….10
2-4、催化劑的選擇………………………………………….12
2-5、奈米碳管合成技術……………………………………13
2-5.1、電弧電漿法……………………………………13
2-5.2、雷射蒸射法……………………………………14
2-5.3、觸媒式化學氣相沈積法………………………14
2-5.4、碳氫化合物氣相熱分解法……………………15
2-5.5、太陽能法………………………………………15
2-6、奈米碳管的應用………………………………………15
2-6.1、高分子材料的添加劑…………………………16
2-6.2、平面顯示器……………………………………16
2-6.3、氫氣的儲存媒介………………………………16
2-6.4、掃描穿隧式顯微鏡及原子粒顯微鏡的探針…17
2-6.5、奈米級電晶體………………………………….17
2-6.6、其他應用……………………………………….18
第三章、研究方法與實驗設備…………………………………………19
3-1、研究方法………………………………………………19
3-1.1、實驗規劃……………………………………..19
3-1.2、實驗設備與原理……………………………..19
3-1.3、試藥與氣體……………………………………20
3-2、實驗步驟………………………………………………20
3-3、分析儀器………………………………………………21
3-3.1、掃描式電子顯微鏡…………………………...22
3-3.2、穿透式電子顯微鏡…………………………...22
3-3.3、氮氣吸附孔隙儀……………………………...23
3-3.4、拉曼光譜儀…………………………………...24
第四章、實驗結果與討論………………………………………………25
4-1、XC-72、SWNT、MWNT的基本特性量測………....25
4-2、改變不同生長參數對奈米碳管的影響………………28
4-3、利用氧化法將白金合成在奈米碳管上………………32
第五章、結論與展望……………………………………………………34
5-1、結論……………………………………………………34
5-2、未來研究與展望………………………………………35
第六章、參考文獻………………………………………………………36
表2-1、奈米碳管與其它材料之機械性質比較表…………………….43
表3-1、實驗所須藥品………………………………………………….47
表4-1、XC-72、SWNT、MWNT的比表面積量測結果………………49
表4-2、實驗設計P1…………………………………………………….49
表4-3、SEM觀察實驗設計P1的結果…………………………………50
表4-4、G-Band和D-Band的IG/ID比值………………………………50
表4-5、實驗設計P2…………………………………………………….51
表4-6、SEM觀察實驗設計P2的結果…………………………………51
表4-7、實驗設計P2 G-Band和D-Band的IG/ID比值…………………52
表4-8、(Pt-Ru):G=10:90合成奈米管之拉曼光譜儀分析結果………52

圖目錄
圖1-1、直接甲醇型燃料電池的基本構造……………………………..42
圖2-1、(a) C60和(b) SWNT的示意圖…………………………………43
圖2-2、(10, 5)碳微管的石墨結構圖……………………….…………..44
圖2-3、不同晶格單層奈米碳管的導電性……………………………..45
圖2-4、奈米碳管形成的3要素………………………….…………….45
圖2-5、白色框粗體字為可用在成長奈米碳管催化劑的過渡金屬…..46
圖3-1、電弧電漿法製備奈米碳管的裝圖…..…………………………47
圖3-2、陰極沈積物的照片………..……………………………………48
圖4-1、XC-72 SEM 照片(10000倍)……………………..…………….53
圖4-2、XC-72 SEM 照片(45000倍)…………………….……………..53
圖4-3、SWNT SEM 照片(10000倍)………………….………………..54
圖4-4、SWNT SEM 照片(45000倍)………………….………………..54
圖4-5、MWNT SEM 照片(9000倍)………………….………………..55
圖4-6、MWNT SEM 照片(50000倍)………………………………….55
圖4-7、SWNT拉曼光譜儀分析結果……………….………………….56
圖4-8、SWNT低頻時拉曼光譜儀分析結果……….……………….…57
圖4-9、MWNT拉曼光譜儀分析結果……………….…………………58
圖4-10、P 1-1 SEM 照片(9000倍)………………….………………….59
圖4-11、P 1-2 SEM 照片(40000倍)……………….…………………..59
圖4-12、P 1-2 SEM 照片(9000倍)………………….…………………60
圖4-13、P 1-2 SEM 照片(40000倍)………………..………………….60
圖4-14、P 1-3 SEM 照片(9000倍)………………….…………………61
圖4-15、P 1-3 SEM 照片(40000倍)………………….………………..61
圖4-16、P 1-4 SEM 照片(9000倍)…………………….………………62
圖4-17、P 1-4 SEM 照片(40000倍)…………………….……………..62
圖4-18、P 1-1 TEM 照片………………………………..……………..63
圖4-19、P 1-1 TEM 照片………………………………………………63
圖4-20、P 1-2 TEM 照片………………………………………………64
圖4-21、P 1-2 TEM 照片………………………………………………64
圖4-22、P 1-3 TEM 照片………………………………………………65
圖4-23、P 1-3 TEM 照片………………………………………………65
圖4-24、P 1-4 TEM 照片………………………………………………66
圖4-25、P 1-4 TEM 照片………………………………………………66
圖4-26、P 1-1拉曼光譜儀分析結果…………………………………..67
圖4-27、P 1-2拉曼光譜儀分析結果…………………………………..68
圖4-28、P 1-3拉曼光譜儀分析結果…………………………………..69
圖4-29、P 1-4拉曼光譜儀分析結果…………………………………..70
圖4-30、P 2-1 SEM 照片(10000倍)……………………………………71
圖4-31、P 2-1 SEM 照片(50000倍)…………………………………...71
圖4-32、P 2-2 SEM 照片(10000倍)…………………………………..72
圖4-33、P 2-2 SEM 照片(35000倍)…………………………………..72
圖4-34、P 2-3 SEM 照片(10000倍)…………………………………..73
圖4-35、P 2-3 SEM 照片(35000倍)…………………………………..73
圖4-36、P 2-5 SEM 照片(10000倍)…………………………………..74
圖4-37、P 2-5 SEM 照片(35000倍)……………………………………74
圖4-38、P 2-6 SEM 照片(10000倍)……………………………………75
圖4-39、P 2-6 SEM 照片(35000倍)……………………………………75
圖4-40、P 2-7 SEM 照片(10000倍)……………………………………76
圖4-41、P 2-7 SEM 照片(35000倍)…………………………………...76
圖4-42、P 2-8 SEM 照片(10000倍)…………………………………...77
圖4-43、P 2-8 SEM 照片(35000倍)…………………………………..77
圖4-44、P 2-1 TEM 照片……………………………………………….78
圖4-45、P 2-2 TEM 照片………………………………………………78
圖4-46、P 2-3 TEM 照片……………………………………………….79
圖4-47、P 2-5 TEM 照片……………………………………………….79
圖4-48、P 2-6 TEM 照片……………………………………………….80
圖4-49、P 2-7 TEM 照片……………………………………………….80
圖4-50、P 2-8 TEM 照片……………………………………………….81
圖4-51、P 2-8 TEM 照片……………………………………………….81
圖4-52、P 2-1拉曼光譜儀分析結果…………………………………..82
圖4-53、P 2-2拉曼光譜儀分析結果…………………………………..83
圖4-54、P 2-3拉曼光譜儀分析結果…………………………………..84
圖4-55、P 2-5拉曼光譜儀分析結果…………………………………..85
圖4-56、P 2-6拉曼光譜儀分析結果……………………….…………..86
圖4-57、P 2-7拉曼光譜儀分析結果…………………………………..87
圖4-58、P 2-8拉曼光譜儀分析結果…………………………………..88
圖4-59、拉曼光譜儀分析結果…………………………………………89
圖4-60、拉曼光譜儀分析結果…………………………………………90
圖4-61、氧化法將白金合成在MWNT上SEM 照片(25000倍)……..91
圖4-62、氧化法將白金合成在MWNT上SEM 照片(40000倍)……91
圖4-63、氧化法將白金合成在MWNT上 TEM 照片……………….92
圖4-64、氧化法將白金合成在MWNT上TEM 照片…………………92
圖4-65、氧化法將白金合成在MWNT上 TEM 照片……………….93圖4-66、氧化法將白金合成在MWNT上TEM 照片………………..93
圖4-67、EDS的量測結果………………………………………………94
1.Fuel Cell Handbook, Fifth Edition, EG & G Services, 2000.
2.Burstein, G. T., Barnett, C. J., Kucernak, A. R., Williams, K. R., 〝Aspects of The Anodic Oxidation of Methanol,〞 Catalysis Today, V. 38, pp. 425, (1997).
3.V. S. Bagotsky, Y. B. Vassilyev,〝Mechanism of Electro-Oxidation of Methanol on the Platinum Electrode,〞 Electrochim. Acta, V. 12, pp. 1323, (1967).
4.R. Inada, K. Shimazu, H. Kita, J. Electroanal. Chem.,〝Analysis of Time-Dependent Kinetics for the Oxidation of Methanol on a Platinum Electrode and Reaction Mechanism,〞V. 277, pp. 315, (1990).
5.N. A. Hampon, M. J. Willars, B. D. McNicol,〝Methanol-Air Fuel Cell: A Selective Review of Methanol Oxidation Mechanisms at Platinum Electrodes in Acid Electrolytes,〞 J. Power Sources, V. 4, pp. 191, (1979).
6.J. O’M Bockris, H. Wroblowa,〝Electrocatalysis,〞 J. Electroanal. Chem. V. 7, pp. 428, (1964).
7.B. Beden, C. Lamy, A. Bewick, K. Kunimatsu,〝Electrosorption of Methanol on a Platinum Electrode. IR Spectroscopic Evidence for Adsorbed CO Species,〞 J. Electranal. Chem., V. 121, pp. 343, (1981).
8.R. P. Eischens, W. A. Pliskin,〝Infradred Spectra of Absorbed Molecules,〞 Adv. Catal., V. 10, pp. 1, (1958).
9.Friedrich, K. A., Geyzers, K. P., Linke, U., Stimming, U., Stumper, 〝CO Adsorption and Oxidation on a Pt (111) Electrode Modified by Ruthenium Deposition: an IR Spectroscopic Study,〞 J. Electroanal. Chem., V. 402, pp. 123, (1996).
10.B. Beden, S. Juanto, J. M. Leger, C. Lamy,〝Infrared Spectroscopic Study of the Methanol Adsorbates at a Platinum Electrode : Part III. Structural Effects and Behaviour of a Polycrystalline Surface,〞 J. Electranal. Chem., V. 238, pp. 323, (1987).
11.S.G. Podkolzin, J. Shen, Juan J. de Pablo, J.A. Dumesic, 〝Equilibrated Adsorption of CO on Silica-Supported Pt Catalysts,〞 J. Phys. Chem. B, V. 104, pp. 4169, (2000).
12.Lam Wing H. Leung, Andrzej Wieckowski, Michael J. Weaver,〝In Situ Infrared Spectroscopy of Well-Defined Single-Crystal Electrodes : Adsorption and Electrooxidation of Carbon Monoxide on Platinum (111) ,〞 The J. Phys. Chem., V. 92, pp. 6985, (1988).
13.X. H. Xia, T. Iwasita, F. Ge, W. Vielstich,〝Structural Effects and Reactivity in Methanol Oxidation on Polycrystalline and Single Crystal Platinum,〞 Electrochim. Acta, V. 41, pp. 711, (1996).
14.Wenshen Li, Changhai Liang, Jieshan Qin, Weijiang Zhou, Hongmei Han, Zhaobin Wei, Gongquan Sun, Qin Xin,〝Carbon Nanotubes as Support for Cathode Catalyst of a Direct Methanol Fuel Cell,〞 Carbon, V. 40, pp. 791, (2002).
15.B. Rajesh, V. Karthik, S. Karthikeyan, K. Ravindranathan Thampi, J. M. Bonard, B. Viswanathan,〝Pt–WO3 Supported on Carbon Nanotubes as Possible Anodes for Direct Methanol Fuel Cells,〞 Fuel, V. 81, pp. 2177, (2002).
16.S. Iijima,〝Helical Microtubules of Graphitic Carbon,〞 Nature, V. 354, pp. 56, (1991).
17.H. W. Kroto, J, R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley,〝C60 : Buckminsterfullerene,〞 Nature, V. 318, pp. 162, (1985).
18.Odom, T. W., Huang, J. L., Kim, P., Lieber, C. M.,〝Structure and Electronic Properties of Carbon Nanotubes,〞 J. Phys. Chem. B, V. 104, pp. 2794, (2000).
19.J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker,〝Electronic Structure of Atomically Resolved Carbon Nanotubes,〞 Nature, V. 391, pp. 59, (1998).
20.S. Dresselhaus, P. C. Eklund,〝Science of Fullerenes and Carbon Nanotubes,〞 Academic Press: San Diego 1996.
21.T. W. Ebbesen,〝Carbon Nanotubes,〞 CRC Press: New York 1997.
22.I. Yakobson and R. E. Smalley,〝Fullerene Nanotubes: C1,000,000 and Beyond,〞 American Scientist, V. 85, pp. 324, (1997).
23.S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, J. B. Nagy,〝A Formation Mechanism for Catalytically Grown Helix Shaped Graphite Nanotubes,〞 Science, V. 265, pp. 635, (1994).
24.W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang,〝Large-Scale Synthesis of Aligned Carbon Nanotubes,〞 Science, V. 274, pp. 1701, (1996).
25.Laplaze, P. Bernier, W. K. Maser, G. Flamant, T. Guillard, and A. Loiseau,〝Carbon Nanotubes: The Solar Approach,〞 Carbon, V. 36, pp. 685, (1998).
26.Brigitte Vigolo, Alain Pénicaud, Claude Coulon, Cédric Sauder, René Pailler, Catherine Journet, Patrick Bernier, and Philippe Poulin, 〝Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes,〞 Science, V. 290, pp. 1331, (2000).
27.W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jinj, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim,〝Fully Sealed, High-Brightness Carbon-Nanotube Field-Emission Display,〞 Appl. Phys. Lett. V. 75, pp. 3129, (1999).
28.C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus,〝Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature,〞 Science, V. 286, pp. 1127, (1999).
29.S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber,〝Covalently Functionalized Nanotubes as Nanometre-Sized Probes in Chemistry and Biology,〞 Nature, V. 394, pp. 52, (1998).
30.S. J. Tans, A. R. M. Verschueren, C. Dekker,〝Room-Temperature Transistor Based on a Single Carbon Nanotube,〞 Nature, V. 393, pp. 49, (1998).
31.Jing Kong, Nathan R. Franklin, Chongwu Zhou, Michael G. Chapline, Shu Peng, Kyeongjae Cho, and Hongjie Dai,〝Nanotube Molecular Wires as Chemical Sensors,〞 Science, V. 287, pp. 622, (2000).
32.Philip Kim and Charles M. Lieber,〝Nanotube Nanotweezers,〞 Science, V. 286, pp. 2148, (1999).
33.Ray H. Baughman, Changxing Cui, Anvar A. Zakhidov, Zafar Iqbal, Joseph N. Barisci, Geoff M. Spinks, Gordon G. Wallace, Alberto Mazzoldi, Danilo De Rossi, Andrew G. Rinzler, Oliver Jaschinski, Siegmar Roth, and Miklos Kertesz,〝Carbon Nanotube Actuators,〞 Science, V. 284, pp. 1340, (1999).
34.A. Peigney , Ch. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, 〝Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes,〞 Carbon, V. 39, pp. 507, (2001).
35.H. Tasi and D. B. Bogy,〝Characterization of Diamondlike Carbon Films and Their Application as Overcoats on Thin-Film Media for Magnetic Recording,〞 J. Vac. Sci. Technol. V. 5, pp. 3287, (1987).
36.D.S. Knight, W.B. White,〝Characterization of Diamond Films by Raman Spectroscopy,〞 J. Mater. Res., V. 4, pp. 385, (1989)
37.X. Z. Liao, R.J. Zhang, C. S. Lee,S. Tong Lee, Y.W.Lam,〝The Influence of Boron Doping on the Structure and Characteristics of Diamond Thin Films,〞 Diamond Relat. Mater, V. 6, pp. 521, (1997).
38.T. M. Wang, W. J. Wang, B. L. Chen,〝Electrical and Optical Properties and Structure Changes of Diamondlike Carbon Films During Thermal Annealing,〞 Phy. Rev. B, V. 50, pp. 5587, (1994).
39.D. Beeman, J. Silverman, R. Lynds, M. R. Anderson,〝Modeling Studies of Amorphous Carbon,〞 Phys. Rev. B., V. 30, pp. 870, (1984).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊