跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 09:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭仕鈞
研究生(外文):Shih-Chun Peng
論文名稱:高溫衝擊流熱傳特性之研究
論文名稱(外文):Heat Transfer Characteristics of a Hot Impinging Jet.
指導教授:曾重仁
指導教授(外文):Chung-Jen Tseng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:92
語文別:英文
論文頁數:96
中文關鍵詞:高溫衝擊流超音速衝擊流熱輻射離散座標法
外文關鍵詞:hot impinging jetradiationsupersonic jetdiscrete-ordinates method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係應用數值方法,探討在考慮輻射效應下,高溫衝擊流的熱傳分析。整個幾何模型由於軸對稱,簡化成二維模型。而紊流模式採用k-e模型。輻射熱傳利用離散座標法求解,包含氣體輻射及固體粉粒的散射效應。數值計算包含兩個部分,在高溫衝擊流主要改變參數為雷諾數大小、衝擊距離、壁面放射率、衝擊板的熱傳導係數以及氣體之光學性質(包括吸收係數和散射係數),來探討熱傳的特性﹔另一部份為超音速高溫衝擊流,主要探討改變噴嘴出口壓力以及噴嘴出口的馬赫數。
在高溫衝擊流部分,結果發現只考慮氣體輻射時,隨著氣體的吸收係數增加,壁面的輻射熱通量和全部熱通量會增加,壁面溫度也會跟著增加﹔當固體粉粒的大小從5µm 增加20µm時,在停滯點處的全部熱通量降低了50% ;衝擊距離從2個噴嘴直徑增加至12個噴嘴直徑時,停滯點的全部熱通量減少了93 %,而且溫度也降低了28%。當雷諾數從15000增加至100000時,停滯點放射出去輻射熱通量增加了93 %;改變衝擊板的熱傳導係數,熱傳導係數愈大能量愈容易從衝擊板散去,所以當熱傳導係數愈大時,衝擊板的溫度分布愈均勻。因此可知在高溫噴流系統下,輻射效應的影響是不容忽略的。
在超音速高溫衝擊流發現,在衝擊距離為4個噴嘴直徑長時,噴嘴出口壓力與周圍環境壓力比從1.0到3.0變化時,震波產生的位置會隨著壓力的增加遠離壁面,不過壓力很大時,增加的幅度較不明顯﹔而溫度則是隨著壓力增加而降低的趨勢;當馬赫數從1.0增加至2.7 時,震波的位置會離衝擊面愈近﹔可是再從2.7增加3.05時,震波的位置反而會慢慢分離而遠離壁面。此時受到震波位置不同的影響,溫度及壓力的分布也就明顯的不同,隨著震波靠近壁面,溫度和壓力會上升,但隨著震波的遠離,而有下降的趨勢。因此可知衝擊速度是一個很大的影響參數。
The heat transfer characteristics of a hot impinging jet with radiation effects are studied. Two-dimensional cylindrical, steady, turbulent flow is simulated using the k-e model. The discrete-ordinates method is used to solve the equation of radiative transfer for radiation. Solutions are presented for the temperature distribution, heat flux, Nusselt number, and pressure along the impingement wall. The effects of important parameters, such as optical properties (absorption and scattering coefficient of the gas), the nozzle-to-plate distance, the Reynolds number, the surface emissivity of the wall, the thermal conductivity of the plate, the nozzle exit pressure to the ambient pressure ratio (PR), and Mach number of the nozzle exit are examined.
Results show that the radiative heat flux and the total heat flux at the stagnation point are reduced by 94 percent and 77 percent respectively, when the absorption coefficient is decreased from 0.2 cm-1 to 0.005 cm-1. The total heat flux at the stagnation point is reduced by 50 percent approximately and the Nusselt number is reduced by 51 percent as the particle size is increased from 5µm to 20µm. As the emissivity is decreased from 0.9 to 0.1, the radiative heat flux from the impingement plate is decreased by 58 percent, and the total heat flux to the impingement plate is increased by 3 percent at the stagnation point. The temperature slightly decreases as the emissivity er is increased. As the nozzle-to-plate distance (z) is increased from 2 to 12 nozzle diameter (D), the total heat flux of the stagnation point is reduced by 93 percent approximately. The stagnation temperature drops by 28 percent and the Nusselt number is reduced by 93.5 percent when z/D is increased from 2 to 12. The net radiative heat flux increase as the Rc decreases. The temperature of the stagnation point is higher 34 percent as Rc increase from 565 to 15206. The radiative heat flux from the stagnation point is increased by 93 percent when the Reynolds number is increased from 15000 to 100000. When the plate temperature is high, the radiative effect becomes more important. As the Reynolds number increases from 15000 to 100000, the temperature at the stagnation point increases by 52 percent approximately.
The position of the shock wave has a profound effect on the temperature field, flow field, and pressure field distributions. When PR is increased the shock wave moves away from the impingement plate and hence increases the circulation zone between the shock wave and the impingement plate. The shock wave moves closer to the plate as the value is increased from 1.0 to 2.7. Again, the shock wave moves away from the plate and increases the circulation zone when the value is increased from 2.7 to 3.05. The velocity increases rapidly before the shock wave and decreases after the shock wave. As the value becomes larger, the temperature is decreased.
CONTENTS

誌謝……………………………………………………………………….I
中文摘要…………………………………………………………….…...II
英文摘要………………………………………………………………..IV
CONTENTS………………………………………………………….… VI
LIST OF FIGURES…………………………………………………..VIII
LIST OF TABLES…………………………………………………….XIV
NOMENCLATURE…………………………………………………..XV
CHAPTER 1 INTRODUCTION……………………………………….1
CHAPTER 2 MATHEMATICAL FORMULATION AND NUMERICAL METHODS………………………… 10
2-1 Governing equations…………………………………..10
2-2 Density approximations…………………………………13
2-3 Submodel for the radiative heat transfer………….…14
2-4 Numerical procedure……………………………………17
2-5 Grid independence test…………………………………19
2-6 Code validation………………………………………....20
CHAPTER 3 RESULTS AND DISCUSSION FOR THE SUBSONIC HOT IMPINGING JET…………………………………26
3-1 Effects of the absorption coefficient of the gas…………27
3-2 Effects of the particle sizes……………………………...29
3-3 Effects of the impingement wall emissivity…………….30
3-4 Effects of nozzle-to-plate distance.…………………..…31
3-5 Effects of the impingement plate thermal conductivity…32
3-6 Effects of the Reynolds number.………………………..34
CHAPTER 4 COMPUTATIONAL RESULTS AND DISCUSSION FOR A SUPERSONIC HOT IMPINGING JET……..……….55
4-1 Effects of the nozzle exit pressure.……………………..57
4-2 Effects of the nozzle exit Mach number…………….59
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS………………75
5-1 Conclusions……………………………………………..69
5-2 Suggestions……………………………………………..71
Reference …………………………………………………………..72
[1]Martin, H., “Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces,” Advanced Heat Transfer, Vol. 13, 1977, pp. 1-60.
[2]Button, D. L. and Wilcox, D., “Impingement Heat Transfer - A Bibliography 1890-1975”, Previews Heat Transfer, Vol. 4, 1978, pp. 83-98.
[3]Viskanta, R., “Heat Transfer to Impinging Isothermal Gas Flame Jets,” Experimental Thermal and Fluid Science, Vol. 6, 1993, pp. 111-134.
[4]Abramovich, G. N., The Theory of Turbulent Jets, MIT Press, Cambridge, 1963.
[5]Sparrow, E. M., and Lee, L., “Analysis of flow Field and Impingement Heat/Mass Transfer Due to a Nonuniform Slot Jet”, Journal of Heat Transfer, vol. 97, 1975, pp. 191-197.
[6]Saad, N. R., Douglas, W. J. M., and Mujumdar, A. S., “Prediction of Heat Transfer Under an Axisymmetric Laminar Impinging Jet”. Industrial & Engineering Chemistry Fundamentals, Vol. 16, 1977, pp.148-154.
[7]Donaldson, C. D., Snedeker, R. S., and Margolis, D. P., “A Study of free Jet Turbulent Structure and Impingement Heat Transfer”, Journal of Fluid Mechanics, Vol. 45, 1971, pp. 477-512.
[8]Ali Khan, M. M., Hirata, M., Kasagi, N. , and Nishieati, N., “Heat Transfer Augmentation in an Axisymmetric Impinging Jet”, Seventh International Heat Transfer Conference, Vol.3, 1982, pp363-368.
[9]Goldstein, R. J., Behbahni, A. I., and Heppelmann, K. K., “Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet”, International Journal of Heat and Mass Transfer, Vol. 29, 1986, pp. 1227-1235.
[10]Livingwood, J. N. B., and Hrycak, P., “Impingement Heat Transfer from Turbulent Air Stream Jets to Flat Plates – A Literature Review, NASA TM X-2778, 1973.
[11]Tzeng, P. Y., Soong, C. Y., and Hsieh, C. D., “Numerical Investigation of Heat Transfer Under Confined Impinging Turbulent Slot Jets,” Numerical Heat Transfer, Part A, Vol. 35, 1999, pp. 903-924.
[12]Chuang, S. H. and Wei, C. Y., “Computations for a Jet Impinging Obliquely on a Flat Surface,” International Journal of Numerical Methods in Fluids, Vol. 12, 1991, pp. 637-653.
[13]Baukal, C. E. and Gebhart, B., “A Review of Empirical Fame Impingement Heat Transfer Corrections”, International Journal of Heat and Fluid Flow, Vol. 17, 1996, pp. 386-396.
[14]Dong, L. L., Cheung, C. S., and Leung, C. W., “Heat Transfer from an Impinging Premixed Butane/Air a Slot Flame Jet,” International Journal of Heat and Mass Transfer, Vol. 45, 2002, pp. 979-992.
[15]Popiel, C. O., Meer, T. H., and Hoogendoorn, C. J., “Convective Heat Transfer on a Plate in an Impinging Round Hot Gas Jet of Low Reynolds Number,” International Journal of Heat and Mass Transfer, Vol. 23, 1980, pp. 1055-1068.
[16]Coeuret, F., “ Transient de material lors de l’impact normal de jets liquides circulaires immerges”, Chemical Engineering Science, Vol. 19, 1975, pp. 1257-1263.
[17]Milson, A. and Chigier, N. A., “Studies of Methane and Methane-Air Flames Impinging on a Cold Plate,” Combustion Flame, Vol. 21, 1973, pp. 295-305.
[18]Buhr, E., Haupt, R., and Kremer, H., Konvektiver Wameubergang Bei Verbrennung in der Grenzschicht, Westdeutscher Verlag GmbH, Opladen, 1976.
[19]van der Meer, T. H., “ Stagnation Point Heat Transfer from Turbulent Low Reynolds Number Jets and flame Jets”, Experiment of Thermal Fluid Science., Vol. 4, 1991, pp. 115-126.
[20]Klyuchnikov, M. K., Tsirkunov, Yu. M., and Petersburge, St., “The Propagation of Vertical Hot Jets in the Atmosphere,” Heat Transfer Research, Vol. 27, 1996, pp. 36-39.
[21]Kang, S.H. and Greif, R., “Flow and Heat Transfer to a Circular Cylinder with a Hot Impinging Air Jet,” International Journal of Heat and Mass Transfer, Vol. 35, 1992, pp. 2173-2183.
[22]Chung-Jen Tseng, Shih-Chun Peng and Chii-Fang Kao, “Effects of Gas Radiation on the Performance of a Hot Impinging Round Jet,” Accepted for publication, Transactions of the Aeronautical and Astronautical Society of the Republic of China, 2003.
[23]Lamont, P. J. and Hunt B. L., “ The Impingement of Underexpanded, Axisymmetric Jets on Perpendicular and Inclined Flat Plates,” Journal of Fluid Mechanism, Vol. 100, 1980, pp. 471-511.
[24]Kim, K. H. and Chang, K. S., “ Axismeetric Impingement of a Hot Jet on a Flat Plate: Equilibrium Flow Analysis of High-Temperature Air,” Shock Waves, Vol. 4, 1994, pp. 155-162.
[25]Chuech, S. G., Lai, M. C., and Feath, G. M., “Structure of Turbulent Sonic Underexpanded Free Jets,” AIAA Journal, Vol. 27, 1989, pp. 545-559.
[26]Modest, M., Radiative Heat Transfer, McGraw-Hill, New York, Chap. 15, 1993, pp. 541-571.
[27]Howell, J. R., Thermal Radiation Heat Transfer, Hemisphere, Washington, Chap. 13, 1992, pp. 597-681.
[28]Menart, J., “Radiative Transport in a Two-Dimensional Axisymmetric Thermal Plasma Using the S-N Discrete Ordinates Method on a Line-by-Line Basis,” Journal of Quantum Spectroscopy & Radiative Transfer, Vol. 67, 2000, pp. 273-291.
[29]Jendoubi, S., Lee H. S., and Kim T. K., “Discrete Ordinates Solutions for Radiatively Participating Media in Cylindrical Enclosure,” Journal of Thermophysics and Heat Transfer, Vol. 7, 1993, pp. 356-364.
[30]Carlson, B. G., and Lathrop, K. D., “Discrete-Ordinates Angular Quadrature of the Neutron Transport Equation”, Technical Information Series Report LASL-3186, Los Alamos Scientific Laboratory, 1965.
[31]Rodi, W., Influence of Buoyancy and Rotation on Equations for Turbulent Length Scale, Proceeding 2nd Symposium On Turbulent Shear Flows, 1979.
[32]Lauder, B. E., and Spalding, D. B., The Numerical Computation of Turbulent Flow, Computing Method In Applied Mechanics & Engineering, Vol. 3,1974, pp. 269.
[33]El Tahry, S. H., Equation for Compressible Reciprocating Engine Flows, AIAA Journal of Energy, Vol. 7, 1983, No. 4, pp. 345-353.
[34]Boussinesq, J., Theorie Anaytique de la Chaleur, Vol. 2, Gauthier-Villars, Paris, 1903.
[35]Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D. C., Chap. 6, 1980.
[36]Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three Dimensional Parabolic Flows,” International Journal of Heat and Mass Transfer, Vol. 15, 1972, pp. 1787.
[37]Baughn, J. W. and Shimizu, S., “Heat Transfer Measurements from a Surface with Uniform Heat Flux and an Impinging Jet,” ASME Journal of Heat Transfer, Vol. 111, 1989, pp. 1096-1098.
[38]Thynell, S. T., “Treatment of Radiation Heat Transfer in Absorbing, Emitting, Scattering Two-Dimensional Cylindrical Media,” Numerical Heat Transfer, vol. 17, 1990, pp. 449- 472.
[39]Howell, J. R., Thermal Radiation Heat Transfer, Hemisphere, Washington, Chap. 13, 1992, pp. 597-681.
[40]Modest, M., Radiative Heat Transfer, McGraw-Hill, New York, Chap. 15, 1993, pp. 541-571.
[41]Craig, F. B., and Donald, R. H., Absorption and Scattering of Light by Small Particles, John Wiley and Sons, New York, Chap. 4, 1983, pp. 82-129.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top