跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳智遠
研究生(外文):Chi-Yeng Chen
論文名稱:三角網格模型偵錯與補洞研究
論文名稱(外文):Errors of Triangular Model Detect and Hole-filling
指導教授:賴景義賴景義引用關係
指導教授(外文):Jiing-Yih Lai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:82
中文關鍵詞:三角網格孔洞修補偵錯
外文關鍵詞:triangular meshhole-fillingwrong detection
相關次數:
  • 被引用被引用:5
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
由於三角網格有格式簡單、易於處理的特性,而且利用三角網格可以構成任何形狀的物體,使得三角網格模型在許多領域,包括逆向工程、醫學骨骼模型建構,快速原型等,都有廣泛的應用,然而針對不同的需求,網格模型的品質都有一定程度的要求,以利於一些後續的處理,如網格切層、網格建構曲面與特徵邊界擷取,因此網格模型偵錯的程序是必要的,藉由偵錯的方式,不但可以了解錯誤的情形並加以解決,也可以使用錯誤偵測了解發生問題處的網格情形,以利於分析為何會有錯誤網格的產生。

本研究針對所有可能的網格錯誤型態做了整體性的介紹,並提出適當的解決方法,另外以資料分組來方式來加快網格模型處理的速度;在處理完網格格式上與連結關係上的錯誤後,最後進行網格孔洞的修補,對於網格孔洞可能的型態作適當的分類,並且取得單一且封閉的孔洞範圍後,利用單點式與多點式兩種補洞的方式來修補,以互相彌補彼此的不足。
Because the triangular mesh has characteristic which the form simple, is easy to process. And utilize triangular can form like any object, make triangular model in a lot of fields, including reverse engineering, medical skeleton model, rapid prototyping and so on, all have extensive application. However in view of the different demand, the quality of the triangular model all has the request of the certain degree, favor some following processing, like slicing, constructs surface and characteristic boundary picks up. So the wrong detection of triangular model is necessary, by the method, not only can understand wrong situation and solve but also can analysis the result of wrong triangular produced.

Have done the introduction to all possible wrong attitudes of triangular in this research, and put forward the proper solution. Moreover, divide into groups in the way to accelerate the speed that deal with of the triangular model. After finishing dealing with the mistake on the triangular format and links in relation, carry on the hole-filling finally. Make proper classification as to hole in a possible type, and obtain single and closed hole. Using the single-point type and multi-point type, the ways of two kinds of hole-filling are mended, in order to remedy the mutual deficiency each other.
摘要 I
英文摘要 II
致謝 III
目 錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究目的與方法 5
1.4 論文架構 7
第二章 網格資料結構 9
2.1 前言 9
2.2 VTK資料結構介紹 9
2.3資料結構的應用 13
2.3.1網格資料分組 16
2.3.2網格資料排序 19
2.3.3網格邊資料 20
2.4孔洞修補資料結構建立 21
第三章 網格錯誤型態分析與修正 25
3.1 前言 25
3.2錯誤網格型態 25
3.2.1退化網格 27
3.2.2自交網格 27
3.2.3不完全連接網格 31
3.2.4法向量不一致 35
3.2.5法向量錯誤 41
3.2.6不合理邊 41
3.3網格修正流程規劃 41
第四章 單點式網格孔洞修補 44
4.1 前言 44
4.2 取得網格孔洞邊界資訊 44
4.2.1 孔洞點取得與分類處理 45
4.2.2 孔洞點排列順序校正 52
4.3 孔洞網格化 55
4.3.1交錯判斷 55
4.3.2孔洞修補 57
第五章 多點式網格孔洞修補 65
5.1 前言 65
5.2 新增網格頂點 66
5.3 孔洞修補流程與結果 68
第六章 結論與未來展望 77
6.1 結論 77
6.2 未來展望 78
參考文獻 81
1. S. Melax, “A Simple, Fast, and Effective Polygon Reduction Algorithm”, Game Developer, p44-49, November, 1998.

2 M. Botsch, S. Steinberg, S. Bischoff and L. Kobbelt, “OpenMesh-ageneric and efficient polygon mesh datastructure”, Computer Graphics and Multimedia RwTH Aachen .

3. K.F. Leong, C. K. Chua and Y. M. Ng, “A Study of StereoLithography File Errors and Repair Part 1. Generic Solutions”, International Journal of Advanced Manufacturing Technology, 12:407-414, 1996.

4. K.F. Leong, C. K. Chua and Y. M. Ng, “A Study of StereoLithography File Errors and Repair Part 1. Special Cases”, International Journal of Advanced Manufacturing Technology, 12:415-422, 1996.

5. J. Wang and M.M. Oliveira, “A Hole-Filling Strategy for Reconstruction of Smooth Surfaces in Range Images”, XVI Brazilian Symposium on Computer Graphics and Image Processing(SIBGRAPI’03), October 12-15,2003.

6. Thomas, “A Review of Two Simple Polygon Triangulation Algorithms”, June 3,1998.

7. G. Lavoué, F. Dupont and A. Baskurt, “Constant Curvature Region Decomposition of 3Dmeshes by a Mixed Approach Vertex-Triangle”, Journal of WSCG, Vol.12, No.2, pp 245-252, WSCG’2004, February 2-6, Plzen, Czech Republic, 2004.

8. P. de Bruin, F. Vos, S. Frisken-Gibson, F. Post and A. Vossepoel, “Improving Mesh Quality of Extracted Surfaces using Surfacenets”, In ASCI 2000, pages 281--288, June 2000.

9. K. Poutrain and M. Contensin, “Dual Brep-CSG collision detection for general polyhedra”, Ninth Pacific Conference on Computer Graphics and Applications (PG'01), Tokyo, Japan, October 16-18, 2001.

10. Meyer M., Desbrun, M., Schroder, P. Barr and Alan H., “Discrete Differential-Geometry Operations for Triangulated 2-Manifolds”, International Workshop on Visualization and Mathematrics, Berlin,Germany, 2002.

11.林秉聖, “逆向工程之三角網格處理研究”, 國立中央大學機械工程研究所碩士論文, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top