跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 04:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳炳忠
研究生(外文):Bing-Jung Chen
論文名稱:柴式生長零缺陷矽單晶過程熱場分佈與缺陷關係之數值模擬分析
論文名稱(外文):Numerical Simulation of thermal and microdefect distributions during the Czochralski Si-Crystal Growth
指導教授:陳志臣
指導教授(外文):Jyh-Chen Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:101
中文關鍵詞:缺陷柴式熱遮罩
外文關鍵詞:heat shielddefectCzochralski
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矽單晶為半導體最主要的基材之一,而大約有85%的矽單晶是經由柴式法(Czochralski method)所製造的,在本研究中將針對柴式法生長矽單晶過程中的爐體設計做分析研究。
對於爐體內的熱流現象經由Heat transfer equation及Incompressible Navier-Stokes equatuion去計算後可以得到爐體內的熱流場及晶棒的熱歷史,再結合R.A.Brown等人所發展的缺陷方程式(Defect equation)計算晶棒內的OISF-ring的位置,再藉此分析晶棒內的缺陷分佈。
對於柴式法生長矽單晶的過程也將逐一針對不同尺寸的爐體內加裝熱遮罩,改變爐體設計對於熱流場及缺陷分佈的影響、氬氣流動現象的影響做深入的研究分析,同時也針對矽單晶的生長尺寸不同對於爐體內熱流場及缺陷分佈的影響加以分析,最後也將探討改變12吋爐體設計對於熱流場及缺陷分佈的影響所產生的變化。
本研究參考文獻及專利中的熱遮罩設計,將其加入爐體內並計算爐體內的熱流場分佈及晶棒內的缺陷分佈,利用熱遮罩的裝設來改變爐體的設計,並且利用熱遮罩的裝設來輔助晶體的生長,將可提升矽單晶的品質、提高矽單晶的拉速及降低氬氣的使用量,降低生產所需的成本。
To clear the characteristics of the Czochralski (Cz) furnace for the single-crystal growth of silicon, a set of global analyses of momentum, heat and mass transfer in small Cz furnaces is carried out using the finite-element method. Consider the global system to be a steady state, axisymmetric system with laminar flow, and ideal gas condition. Convective and conductive heat transfers, radiative heat transfer between diffuse surfaces and the Navier–Stokes equations for gas are all combined and solved together.
In this work, heat shield is installed in the Czochralski furnace. Heat shield refers from the reference papers and U.S. patent. Heat shield will effect the thermal and microdefect distributions. In this work will analysis the heat shield effects by numerical simulation.
目錄
摘要......................................................Ⅰ
誌謝......................................................Ⅱ
圖表目錄..................................................Ⅴ
符號說明..................................................Ⅷ
第一章、緒論..............................................1
1.1 研究動機及研究目的................................... 1
1.2 柴式法生長矽單晶簡介.................................2
第二章、矽單晶中缺陷生成概論..............................5
2.1 矽晶圓中的微缺陷的生成概論........................... 5
2.2 微缺陷形式介紹.......................................6
2.2.1 A-defects與B-defects.............................6
2.2.2 D-defects........................................6
2.2.3 OISF-ring........................................8
2.3 缺陷生成動力學理論及數值模擬.........................11
2.3.1 缺陷的生成動力學.................................11
2.3.2 缺陷分佈數值模擬.................................14
2.3.3 V. V. Voronkov的 理論............................ 14
2.3.4 R. A. Brown團隊對於缺陷分佈的研究................17
2.3.5 Dornberger 對於熱場設計的研究....................19
第三章、系統熱流現象及缺陷計算分析........................21
3.1 長晶過程熱流行為探討.................................22
3.1.1 文獻回顧......................................... 22
3.1.2 加入熱遮罩的改變................................. 23
3.1.3 本研究中所採用之熱遮罩型式................... 24
3.1.4 長晶過程熱傳遞行為............................... 25
3.2 系統描述與數值方法................................... 27
3.2.1 系統內熱流計算分析............................... 27
3.2.2 缺陷計算分析..................................... 30
3.2.3 參數設定與數值方法介紹...........................32
3.3 爐體內熱場設計....................................... 34
3.3.1 Hot zone元件的熱分佈情形.........................34
3.3.2 SiO的污染效應.................................... 34
3.3.3 晶棒的熱歷史與缺陷成核溫度.......................35
第四章、結果與討論........................................ 36
4.1 整體熱流場分析...................................... 37
4.2 6吋爐體內裝設熱遮罩後的改變..........................39
4.2.1 有無裝設熱遮罩後的熱場比較.......................39
4.2.2 裝設熱遮罩後的缺陷分佈............................. 41
4.3 熱遮罩對於爐內流場之影響............................. 43
4.4 尺寸因素對於晶棒內缺陷分佈的影響.....................45
4.4.1 尺寸因素對於爐體熱場的影響.......................45
4.4.2 尺寸因素對於晶棒缺陷分佈的影響...................46
4.5 熱遮罩應用於12吋爐體的影響........................... 47
4.5.1 裝設熱遮罩後的熱場改變.......................47
4.5.2 裝設熱遮罩後的流場分佈.......................48
4.5.3 裝設熱遮罩後的缺陷分佈.............................48
4.6 晶體拉速對於缺陷分佈的影響...........................49
第五章、結論..............................................50
參考文獻 ................................................. 52
【1】Hong Xiao 著,羅正中、張鼎張譯,” 半導體製程技術導論”,歐亞書局,2003。
【2】王建華,”矽晶圓尺寸需求演變”,工研院經資中心IT IS計劃(2002)。
【3】 Pawel E. Tomaszewski,”Jan Czochralski-father of the Czochralski method”,J.Crystal Growth,vol.236(2002),p1-4。
【4】G.K. Teal and J.B. Little,Phys. Rev.,vol.78(1950),p647。
【5】W.C. Dash,J. Applied Physics,vol.30(1959),p459。
【6】W.G. Pfann,Trans. AIME,vol.194(1952),p747。
【7】K. Takano,Y. Shiraishi,T. Iida,N. Takase,J. Matsubara,N. Machida,M. Kuramoto,H. Yamagishi,”Numerical simulation for silicon crystal growth of up to 400mm diameter in Czochralski furnaces”,Mater. Sci. and Eng.,B73(2000),p30-35。
【8】K. Takano,Y. Shiraishi,T. Iida,N. Takase,J. Matsubara,N. Machida,M. Kuramoto,H. Yamagishi,”Global simulation of the CZ silicon crystal growth up to 400mm in diameter”,J.Crystal Growth,vol.229(2001),p26-30。
【9】 T. Sinno,E. Dornberger,W. von Ammon,R.A. Brown,F. Dupret,”Defect engineering of Czochralski single-crystal silicon”,Materials Sci. and Eng.,vol.28(2000),p149-198。
【10】T. Abe,”The formation mechanism of grown-in defects in CZ silicon crystals based on thermal gradients measured by thermocouples near growth interfaces”,Mater. Sci. and Eng.,B73(2000),p16-29。
【11】 J. Ryuta,E. Morita,T. Tanaka,Y. Shimanuki,” Crystal-Originated Singularities on Si Wafer Surface After Sc1 Cleaning”,Japan. J. Applied. Phys.,vol.29(1990),p1947-1949。
【12】J.P. Fillard,” Investigations of Oxygen Precipitates in Czochralski Silicon-Wafers by Using Infrared Tomography”,J.Crystal Growth,vol.103(1990),p71-77。
【13】S. Umeno,M. Okui,M. Hourai,M. Sano,H.Tsuya,” Relationship Between Grown-in Defects in Czochralski Silicon-Crystals”,Japan. J. Applied. Phys.,vol.36(1997),p591-594。
【14】 T. Sinno and R.A. Brown,”Point defect dynamics and the oxidation-induced stacking-fault ring in Czochralski-grown silicon crystals”,J.Electrochem.Soc.,vol.145(1998),p302-318。
【15】林明獻,”矽晶圓半導體材料導論”,全華科技圖書有限公司,1999。
【16】J.M. Diahman,S.E. Haszko,R.B. Marcus,S.P. Murarka,T.T. Sheng,”Electrically active stacking faults in CMOS integrated circuits”,J. Applied. Phys.,vol.50(1979),p2689-2696。
【17】 S. Prussin,S.P. Li,R.H. Cockrum,” The effect of oxidation-expanded defects upon MOS parameters”,J. Applied. Phys.,vol.48(1977),p4613-4617。
【18】M. Hasebe,Y. Takeoka,S. Shinoyama,S. Naito,”In defects control in semiconductors”,K. Sumino. Ed.(1990)p.157。
【19】W. von Ammon,E. Dornberger,H. Oelkurg,H. Weidner,”The dependence of bulk defects on the axial temperature gradient of silicon crystals during Czochralski growth”, J.Crystal Growth ,vol.151(1995),p273-277。
【20】V.V. Voronkov,R. Falster,”Grown-in microdefects, residual vacancies and oxygen precipitation bands in Czochralski silicon”,J.Crystal Growth,vol.204(1999),p462-474。
【21】M. Okui,M. Nishimoto,”Effect of the axial temperature gradient on the formation of grown-in defect regions in Czochralski silicon crystals;reversion of the defect regions between the inside and outside of the ring-OSF”,J.Crystal Growth,vol.237-239(2002),p1651-1656。
【22】J.W. Mayer,S.S. Lau,”Electronic Materials Science:For integrated circuits in Si and GaAs”,Macmillan Publishing company,1990。
【23】Torbjorn Carlberg,”Calculated solubilities of oxygen in liquid and solid silicon”,J. Electrochemical Soc.,vol.107(1986),p.463-470。
【24】 N.A. Stolwijk,J. Holzl,W. Frank,E.R. Weber,H. Mehrer,”Diffusion of gold in dislocation-free or highly dislocated silicon measured by the spreading-resistance technique”,Appl. Phys. A,vol.39(1986),p37-48。
【25】H. Bracht,N.A. Stolwijk,H. Mehrer,”Properties of intrinsic point defects in silicon determinied by zinc diffusion experiments under non-equilibrium conditions”,Phys. Rev. B,vol.52(1995),p16542-16560。
【26】H. Zimmermann,H. Ryssel,”Modeling of platinum diffusion in silicon under non-equilibrium conditions”,J. Electrochemical Soc.,vol.139(1992),p.256-262。
【27】 S.M. Hu,”Formation of stacking faults and enhanced diffusion in the oxidation of silicon”,J. Applied. Phys.,vol.45(1974),p1567-1573。
【28】 D. Frenkel,B. Smit,”Understanding Molecular Simulation”,Academic Press San Diego,1996。
【29】D. Maroudas,R.A. Brown,”Atomistics calculation of the self-intersitial diffusivity in silicon”,Appl. Phys. Lett.,vol.62(1993),p172-174。
【30】H. Balamane,T. Halicioglu,W.A. Tiller,”Comparative study of silicon empirical interatomic potentials”,Phys. Rev. B,vol.46(1992),p.2250-2279。
【31】W. Wijaranakula,”Numerical modeling of the point defect aggregation during the Czochralski silicon crystal growth”, J.Electrochem.Soc.,vol.139(1992),p604-615。
【32】 R. Habu,K. Kojima,A. Tomiura,”Diffusion of point defects in silicon crystals during melt-growth:Ⅰ-uphill diffusion”,Japan. Appl. Phys.,vol.32(1993),p1740-1746。
【33】 R. Habu,K. Kojima,A. Tomiura,”Diffusion of point defects in silicon crystals during melt-growth:Ⅱ-one diffusion model”,Japan. Appl. Phys.,vol.32(1993),p1747-1753。
【34】 R.A. Brown,D. Maroudas,T. Sinno,”Modeling point defect dynamics in the crystal growth of silicon”, J.Crystal Growth,vol.137(1994),p12-25。
【35】 T. Sinno and R.A. Brown,”Modeling microdefect formation in Czochralski silicon”, J.Electrochem.Soc.,vol.146(1999),p2300-2312。
【36】V.V. Voronkov,”The mechanism of swirl defects formation in silicon”,J.Crystal Growth,vol.59(1982),p625-643。
【37】 H.K. Kuiken and P.J. Roksnoer,”Analysis of the temperature distribution in FZ silicon crystals”,J.Crystal Growth,vol.47(1979),p29-42。
【38】T. Mori,”Modeling the linkages between heat transfer and microdefect formation in crystal growth:examples of Czochralski growth of silicon and vertical Bridgman growth of bismuth germinate”,Ph.D. thesis,Massachusetts Institute of Technology,Cambridge,2000
【39】E. Dornberger,J. Virbulis,B. Hanna,R. Hoelzl,E. Daub,W. von Ammon,”Silicon crystals for future requirements of 300mm wafers”, J.Crystal Growth, vol.229(2001),p11-16。
【40】 R.W. Johnson,”Handbook of Fluid Mechanics, Springer”,Heidelberg,1998,chapter14。
【41】 J.J. Derby and R.A. Brown,”Thermal-capillary analysis of Czochralski and liquid encapsulated crystal growth Ⅰ. simulation”, J.Crystal Growth ,vol.74(1986),p605-624。
【42】 J.J. Derby and R.A. Brown,”Thermal-capillary analysis of Czochralski and liquid encapsulated crystal growth Ⅱ. Processing strategies”, J.Crystal Growth ,vol.75(1986),p227-240。
【43】F. Dupret,Y. Ryckmans,P. Wouters,M.J. Crochet,”Numerical calculation of the global heat transfer in a Czochralski furnace”, J.Crystal Growth,vol.79(1986),p84-91。
【44】 F. Dupret,P. Nicodeme,Y. Ryckmans,P. Wouters,M.J. Crochet,”Global modeling of heat transfer in crystal growth furnaces”, Int. J. Heat Mass Transfer.,vol.33(1990),p1849-1871。
【45】A. Virzi,”Numerical study of Czochralski silicon full process thermokinetics”,Modeling Simul. Mater. Sci. Eng.,Vol.1(1993)p693-706
【46】 N. Van den Bogaert,F. Dupret,”Dynamic global simulation of the Czochralski process Ⅰ. Principles of the method”,J.Crystal Growth ,vol.171(1997),p65-76。
【47】 N. Van den Bogaert,F. Dupret,”Dynamic global simulation of the Czochralski process Ⅱ. Analysis of the growth of a germanium crystal”,J.Crystal Growth vol.171(1997),p77-93。
【48】 A. Lipchin,R.A. Brown,”Hybrid finite-volume/finite-element simulation of heat transfer and melt turbulence in Czochralski crystal growth of silicon”, J.Crystal Growth,vol.216(2000),p192-203。
【49】M. Li,Y. Li,N. Imaishi,T. Tsukada,”Global simulation of a silicon Czochralski furnace”,J.Crystal Growth,vol.234(2002),p32-46。
【50】W. von Ammon,E. Dornberger,H. Oelkurg,H. Weidner,”The dependence of bulk defects on the axial temperature gradient of silicon crystals during Czochralski growth”, J.Crystal Growth ,vol.151(1995),p273-277。
【51】E. Dornberger,E. Tomzig,A. Seidl,S. Schmitt,H.J. Leister,Ch. Schmitt,G. Muller,”Thermal simulation of the Czochralski silicon growth process by three different models and comparision with experimental results”, J.Crystal Growth ,vol.180(1997),p461-467。
【52】 W. von Ammon,E. Dornberger,P.O. Hansson,”Bulk properties of very large diameter silicon single crystals”, J.Crystal Growth ,vol.198/199(1999),p390-398。
【53】U.S. Patent 5361721 of Nov.8, 1994
【54】U.S. Patent 5373805 of Dec.20, 1994
【55】U.S. Patent 5476065 of Dec.19, 1995
【56】U.S. Patent 5922127 of Jul.13, 1999
【57】U.S. Patent 5951753 of Sep.14, 1999
【58】U.S. Patent 6036776 of Mar.14, 2000
【59】U.S. Patent 6179911 of Jan.30, 2001
【60】U.S. Patent 6197111 of Mar.6, 2001
【61】U.S. Patent Pub. No. US2002/0000189 A1 of Jan.3, 2002
【62】U.S. Patent 6676753 of Jan.13, 2004
【63】 A. Lipchin,R.A. Brown,”Hybrid finite-volume/finite-element simulation of heat transfer and melt turbulence in Czochralski crystal growth of silicon”, J.Crystal Growth,vol.216(2000),p192-203。
【64】 R.A. Brown,Z. Wang,T. Mori,”Engineering analysis of microdefect formation during silicon crystal growth”, J.Crystal Growth,vol.225(2001),p97-109。
【65】余礎宇,”Czochralski 長晶爐流場之數值模擬分析”,國立清華大學動力機械工程研究所碩士論文,2002。
【66】F.P. Incropera,D.P. DeWitt,”Fundamentals of Heat and Mass Transfer”,John Wiley & Sons, Inc.,Ed.4(1996)。
【67】W. von Ammon,E. Dornberger,H. Oelkurg,H. Weidner,”The dependence of bulk defects on the axial temperature gradient of silicon crystals during Czochralski growth”, J.Crystal Growth ,vol.151(1995),p273-277。
【68】W. von Ammon,E. Dornberger,F. Dupret,N. van den Bogaert,”Transient computer simulation of a CZ crystal growth process”,J.Crystal Growth ,vol.166(1996),p452-457。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳靜吉(1976)。分歧式和連鎖式的聯想訓練對創造思考的影響。國立政治大學學報,33,45-71。
2. 汪靜明、楊冠政、劉豐壽、黃月娟(1996a)。愛護水資源與學校環境教育。環境教育季刊,31,99-110。
3. 汪靜明(1996)。台灣中部區域環境教育課題及推動策略。環境教育季刊,29,2-16。
4. 汪靜明(2000a)。水資源環境教育的理念。水資源管理季刊,5,63-70。
5. 汪靜明(2000b)。學校環境教育的理念與原理。環境教育季刊,43,18-34。
6. 施建農(2002)。創新教育何為先。應用心理研究季刊,15,53-59。
7. 徐享崑(1996)。我國水資源發展課題與其政策。環境教育季刊,31,2-19。
8. 黃嘉郁(1999a)。他山之石﹘美國水資源教育計畫與課程介紹。節約用水季刊,16,48-52。
9. 黃嘉郁(1999b)。解決臺灣水資源問題的基石--水資源教育的實施與落實。節約用水季刊,14,16-20。
10. 曾繁鈞(2001)。社會科創造性問題解決教學對國小學童創造性、問題解決能力及社會科學業成就之影響。國立屏東師範學院國民教育研究所碩士論文,未出版,屏東市。
11. 葉玉珠(2000)。創造力發展的生態系統模式及其應用於科技與資訊領域之內涵。教育心理學報,1,95-97。
12. 郭有遹(1989)。創造的定義及其所衍生的問題。創造思考教育,1,10-12。
13. 陳佩正(2002)。科學發展史的教學與學生的創意。應用心理研究季刊,15,67-77。