跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 12:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林傑仁
研究生(外文):Jie-Ren Lin
論文名稱:熱氣泡式噴墨塗佈
論文名稱(外文):Color filter is coated by thermal inkjet
指導教授:周復初周復初引用關係
指導教授(外文):fu-chu chou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:68
中文關鍵詞:塗佈彩色濾光片熱氣泡式噴墨
外文關鍵詞:thermal inkjetcolor filtercoat
相關次數:
  • 被引用被引用:1
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著微小液滴應用日漸繁瑣,液滴噴出之狀態,將逐漸受到重視,在現今彩色濾光片製作上,更扮演著一席重要地位。其中出墨的連續性、穩定性與衛星液滴等現象將是值得研究的課題。本研究針對熱氣泡式噴墨頭之液滴噴出狀態進行觀察,利用不同脈衝寬度、電壓、頻率加以改變,來獲得穩定噴出之操作參數,以利用於噴出塗佈方面。實驗結果顯示,於單一噴頭中,提高頻率有助於克服衛星液滴現象,但於雙噴頭中,由於彼此間相互影響,將造成噴出不穩定狀態。在脈衝寬度對單一噴頭影響中,發現增加脈衝寬度令噴出液徑些微上升,但當增加到接近損壞時,液徑反而會減少。雙噴頭實驗中,脈衝寬度增加,使平均液徑大小和差異值都成一波峰曲線。另外從表面沾濕對噴出之影響中,得到可提高噴出頻率令影響力變小。經由上述結果,已得可穩定噴出之電壓、脈衝寬度、頻率,並得以利用於彩色濾光片之塗佈。
The droplet has been used widely. It state will be more and more important and play a great role in the producing process of color filter. Among that, it is worthy to pay attention to study the formation of satellite droplet. This research is going to find out the circumstance of thermal ink jet. Using some parameter about different pulse time, voltage and frequency obtain the stable range for coating. The results show that the higher frequency was good for overcoming the problem of extra tiny or so-called satellite droplets on single-nozzle. Yet, concerning to selected voltage, the unstable jet happened on double nozzle. From the pulse time relating to the droplet diameter, increasing pulse time will enlarge the droplet diameter slightly up on single-nozzle. As the raising pulse time, the trending damage of single-nozzle will reduce the droplet diameter. On the double-nozzle, we can get that promoting the pulse time makes the droplet's diameter and error variation to be a peak. Besides, the promoting frequency can reduce the soaking surface effect. After all, a stable ejection from different voltage, pulse time and frequency can be used on color filter coating.
摘要.............................................................Ⅰ
英文摘要........................................................Ⅱ
致謝詞..........................................................Ⅲ
目錄.............................................................Ⅳ
表目錄...........................................................Ⅵ
圖目錄...........................................................Ⅶ
第一章緒論...................................................1
1-1 噴墨列印技術演進...................................1
1-2 研究目的............................................2
第二章文獻回顧.............................................7
2-1 噴墨頭噴出現象與理論..............................7
2-2 液滴撞擊平板之研究................................12
第三章實驗設備及步驟....................................15
3-1 實驗設備...........................................15
3-1-1 微液滴控制系統...................................15
3-1-2 微調定位系統.....................................16
3-1-3 影像擷取系統.....................................17
V
3-1-4 移動平台系統.....................................18
3-2 實驗步驟...........................................19
第四章結果與討論..........................................22
4-1 單一噴頭不同參數的影響...........................22
4-1-1 可噴出之參數.....................................22
4-1-2 脈衝寬度對液徑的影響.............................23
4-1-3 電壓對液徑的影響.................................23
4-1-4 頻率對液徑的影響.................................24
4-2 相鄰雙噴頭不同參數的影響.........................26
4-2-1 可噴出之參數.....................................26
4-2-2 脈衝寬度對液徑的影響.............................26
4-2-3 電壓對液徑的影響.................................27
4-2-4 頻率對噴出的影響.................................27
4-3 表面沾濕的影響....................................29
4-4 可連續塗佈之範圍..................................30
第五章結論..................................................31
文獻回顧......................................................33
附表...........................................................36
附圖...........................................................38
1. R. Elmqvist, Measuring Instrument of the Recording Type, U. S. Patent 2566443, 1951.
2. R. G. Sweet, High Frequency Recording with Electrostatically Deflected Ink-Jets, Rev. Sci. Instrum, vol. 36, pp. 131-136, 1965.
3. W. L. Buehner, J. D. Hill, T. H. Williams and J. W. Woods, Application of Ink-Jet Technology to A Word Processing Output Printer, IBM Journal of Research and Development, vol. 21, pp. 2-9, 1977.
4. S. L. Zoltan, Pulse Droplet Ejection System, U. S. Patent 3683212, 1974.
5. E. L. Kyser and S. B. Sears, Method and Apparatus for Recording with Writing Fluids and Drop Projection Means Therefore, U. S. Patent 3946398, 1976.
6. J. L. Vaught, F. L. Cloutier, D. K. Donald, J. D. Meyer, C. A. Tacklind and H. H. Taub, Thermal Ink-Jet Printer, U. S. Patent 4490728, 1979.
7. 殷孟雲, 噴墨印表機設計原理, 全華科技圖書股份有限公司, 2001.
8. J. T. Yeh, Simulation and Industrial Applications of Inkjet, The 7th National Computational Fluid Dynamics Conference, 2000.
9. S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, A high Resolution, Electrostatically-Driven Commercial Inkjet Head, Proceedings of the IEEE Micro Electro Mechanical Systems, pp. 793-798, 2000.
10. S. Kamisuki, T. Hagata, C. Tezuka, Y. Nose, M. Fujii, and M. Atobe, A Low Power, Small, Electrostatically-Driven Commercial Inkjet Head, Proceedings of the IEEE Micro Electro Mechanical Systems, pp. 63-68, 1998.
11. F. G. Tseng, C. J. Kim and C. M. Ho, high-Resolution High-Frequency Monolithic Top-Shooting Microinjector Free of Satellite Drops - Part I: Concept, Design, and Model, Journal of Microelectromechanical system, vol. 11, no. 5, pp. 427-436, 2002.
12. H. C. Lee, Drop Formation in a Liquid Jet, IBM Journal of Research and Development, vol. 18, no. 4, pp. 364-369, 1974.
13. W. T. Pimbley and H. C. Lee, Satellite Droplet Formation in a Liquid Jet, IBM Journal of Research and Development, vol. 21, no. 1, pp. 21-30, 1977.
14. C. F. Hsu and N. Ashgriz, Impaction of A Droplet on an Orifice Plate, Physics of Fluids, vol. 16,no. 2, pp. 400-411, 2004.
15. W. A. Buskirk, D. E. Hankleman, S. T. Hall, P. H. Kanarek, R. N. Low, K. E. Trueba and R. Van de Paul, Development of a high-resolution thermal inkjet printhead, Hewlett-Packard Journal, Oct, pp. 55-61, 1988.
16. P. Krause, E. Obermeier and W. Whel, Backshooter – A New Smart Micromachine Single-Chip Inkjet Printhead, The 8th International Conference on Solid-state Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, June 25-29, pp. 325-328, 1995.
17. J. H. Hilbing and S. D. Heister, Droplet size control in liquid jet breakup, Physics of Fluids, vol. 8, no. 6, pp. 1574-1581, 1996.
18. R. R. Allen, J. D. Meyer and W. R. Knight, Thermodynamics and Hydrodynamics of Thermal Ink Jet, Hewlett-Packard Journal, May, pp. 21-27, 1985.
19. A. Asai, Bubble Dynamics In Boiling Under High Heat Flux Pulse Heating, Journal of Heat Transfer, vol. 113, pp. 973-979, 1991.
20. A. Asai, Three-dimensional Calculation of Bubble Growth and Drop Ejection in a Bubble Jet Printer, Journal of Fluid Engineering, vol. 114, pp. 638-641, 1992.
21. Y. Hong, N. Ashgriz and J. Andrews, Experimental Study of Bubble Dynamics on a Micro Heater Induced by Pulse Heating, Journal of Heat Transfer, vol. 126, no. 2, pp. 259-271, 2004.
22. J. Li and P. Cheng, Bubble Cavitation in a Microchannel, International Journal of Heat Transfer, vol. 47, no. 12-13, pp. 2689-2698, 2004.
23. J. E. Fromm, Numerical Calculation of The Fluid Dynamics of Drop-On-Demand Jets, IBM Journal of Research and Development, vol. 28, no. 3, pp. 322-333, 1984.
24. R. L. Adams and J. Roy, One-Dimensional Numerical Model of a Drop-On-Demand Ink Jet, Journal of Applied Mechanics, vol. 53, no. 1, pp. 193-197, 1986.
25. C. A. Bruce, Dependence of Ink Jet Dynamics on Fluid Characteristics, IBM Journal of Research and Development, pp.258-270, May 1976.
26. J. F. Oliver, Initial stages of ink jet drop impaction, spreading, and wetting on paper, Tappi Journal, vol.67, n.10, pp.90-94, 1984.
27. S. Chandra, M. di Marzo, Y. M. Qiao and Tartarini, Effect of liquid-solid contactangle on droplet evaporation, Fire Safety Journal, vol.27, pp.141-158, 1996.
28. J. D. Beasley, Model for Fluid Ejection and Refill in an Impulse Drive Jet, Photogr. Sci. Eng, vol. 21, pp. 78-82, 1977.
29. N. Hatta, H. Fujimoto, H. Takuda, K. Kinoshita, and O. Takahashi, Collision dynamics of a water droplet impinging on a rigid surface above the Leidenfrost temperature, ISIJ International, vol. 35, no. 1, pp. 50-55, 1995.
30. S. Chandra and C. T. Avedisian, On the collision of a droplet with a solid surface, Proc. R. Soc. Lond. A, vol. 432, pp. 13-41, 1991.
31. S. L. Manzello and J. C. Yang, An Experimental Investigation of Water Droplet Impingement on a Heated Wax Surface, International Journal of Heat and Mass Transfer, vol. 47, no. 8, pp. 1701-1709, 2004.
32. A. L. Yarin and D. A. Weiss, Impact of Drops on Solid Surface:Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity, Journal of Fluid Mechanics, vol. 283, pp. 141-173, 1995.
33. T. Inamura, H. Yanaoka and T. Tomoda, Prediction of Mean Droplet Size of Sprays Issued from Wall Impingement Injector, AAIA Journal, vol. 42, no. 3, pp. 614-621, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top