跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/31 16:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許智淵
研究生(外文):jr-yuan shiu
論文名稱:粉粒體內摩擦係數對剪力顆粒流輸送性質之影響
論文名稱(外文):Effect of internal friction angle of particles on transport properties of sheared granular flows.
指導教授:蕭述三蕭述三引用關係
指導教授(外文):Shu-San Hsiau
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:91
中文關鍵詞:粒子自我擴散係數顆粒流剪力槽粒子間內摩擦係數壓力規
外文關鍵詞:granular flowinternal friction coefficientstress gageshear cellself-diffusion coefficient
相關次數:
  • 被引用被引用:1
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本論文將以實驗方法,對粉粒體內摩擦係數於剪力槽內之應力與傳輸現象做分析。改變變因為不同粒子間內摩擦係數值μp之顆粒體以及不同粒子佔有體積比ν,以擷取影像計算的方式來取得不同粒子之平均速度分布、變動速度分布、粒子溫度分布、粒子擴散位移以及粒子擴散係數。並利用置於剪力槽上壁面三個雙向壓力規,量測剪應力值與正向應力值,用於分析作用於剪力槽邊壁之作用力。
在相同條件下,正向應力值皆大於所測得的剪應力值。在固定粒子佔有體積比ν中,粒子間內摩擦係數µp較小,其正向應力值與剪應力值會越大。隨著粒子佔有體積比ν的提高,量測得的正向應力值與剪應力值會越大。隨著粒子佔有體積比ν的變化,粒子間的內摩擦係數µp較大者對於應力的影響也較大。
粒子間內摩擦係數µp越大,Dxx與Dyy 值越小。Dxx與Dyy其值隨粒子佔有體積比ν的提高而減少。在較低的粒子佔有體積比ν中,粒子間內摩擦係數µp所造成Dxx與Dyy的差異會大於在高粒子佔有體積比ν中。
We have studied the effect of internal friction coefficient of particles on transport properties of sheared granular flows. Experiments were performed in shear cell device under four different internal friction coefficients of the particles and five different solid fractions. The motions of the granular materials were recorded by a high-speed camera. By using image processing technology and particle tracking method, we measured and analyzed the distributions of the average velocity, fluctuation velocity, granular temperature, and particle self-diffusion coefficient. Three bi-directional stress gages were used to measure the normal and shear stresses along upper boundary.

According to the experimental results, the stresses and the self-diffusion coefficients of the particles were inverse the internal friction coefficients. In the same conditions, the normal stresses were apparently higher than the shear stresses. The fluctuation and the self-diffusion coefficients in the streamwise direction were obviously higher than those in the transverse direction. The normal and shear stresses were found to increase with the solid fraction, but the diffusion coefficients were greater in a more dilute flow system. While the particles of the shear flows were in low solid fraction condition, the stresses and self-diffusion coefficients were much different than those in high solid fraction condition.
目錄

摘 要 i
Abstract ii
目 錄 iii
附表目錄 v
附圖目錄 vi
符號說明 x

第一章 簡介 1
1.1粒子流簡介 1
1.2剪力粒子流的研究歷史 4
1.3研究方向與架構 12
第二章 實驗方法 14
2.1 實驗設備 14
一、剪力槽裝置 14
二、顆粒體 16
三、觀測及量測儀器 17
2.2 實驗原理與方法 21
一、Correlation簡介 21
二、Correlation程式流程 23
2.3 粒子溫度之概念 26
2.4 剪力槽內剪應力分析 27
2.5 自我擴散理論 28
2.6 實驗步驟 30
2.7 誤差校正 34
一、誤差來源 34
二、誤差校正(Calibration) 35
第三章 結果與討論 37
3.1速度曲線分布圖與粒子溫度分布圖 37
3.2剪力槽內應力分析 44
3.3粒子擴散位移與擴散係數 47
第四章 結論 52
參考文獻 54
參考文獻

, J. O., Shen, H. H., and Gupta, R. B., 1996, “Experimental and
Numerical Studies of Shear Layers in Granular Shear Cell,” J.
Engineering Mech., March, pp. 187-196.
Bridgwater, J.,1980, “Self-Diffusion Coefficients in Deforming Powders,
” Powder Tech., Vol. 25, pp. 129-131.
Campbell, C. S., 1989, “The Stress Tensor for Simple Shear Flow of a
Granular Material,” J. Fluid Mech.,Vol. 203. pp. 449-473.
Campbell, C. S., 1990, “Rapid Granular Flows,” Annu. Rev. Fluid Mech.,
Vol. 22, pp. 57-92.
Campbell, C. S., 1997, “Self-Diffusion in Granular Shear Flows,”
Submitted to J. Fuild Mech.,Vol. 348. pp. 85-101.
Campbell, C. S. and Brennen, C. E., 1985a, “Computer Simulation of
Granular Shear Flows,” J. Fluid Mech., Vol. 151, pp. 167-188.
Campbell, C. S. and Brennen, C. E., 1985b, “Chute Flows of Granular
Material: Some Computer Simulations,” J. Appl. Mech., Vol. 52, pp.
172-178.
Campbell, C. S. and Gong, A., 1986, “The Stress Tensor in a Two-
Dimensional Granular Shear Flow,” J. Fluid Mech.,Vol. 164. pp. 107-
125.
Einstein, A., 1956, “Investigations on the Theory of the Brownian
Movement,” (ed. R. Furth) Dover Publications Inc.
Hanes, D. M. and Inman, D. L., 1983, “Studies on the Mechanics of
Rapidly Flowing Granular-Fluid Materials,” Ph.D. Thsis. Univ. Calif.,
San Diego, La Jolla.
Hanes, D. M. and Inman, D. L., 1985, “Observations of Rapid Flowing
Granular-Fluid Flow,” J. Fluid Mech., Vol. 150, pp. 357-380.
Hsiau, S. S. and Hunt, M. L., 1993a, “Shear-Induced Particle Diffusion
and Longitudinal Velocity Fluctuations in a Granular-Flow Mixing
Layer,” J. Fluid Mech., Vol. 251, pp. 299-313.
Hsiau, S. S. and Hunt, M. L., 1993b, “Kinetic Theory Analysis of Flow-
Induced Particle Diffusion and Thermal Conduction in Granular
Material Flows,” J. Heat Transfer, Vol. 115, pp. 541-548.
Hsiau, S. S. and Yang, W. L., 2002, “Stress and Transport Phenomena in Sheard Granular Flows with Different Wall Condition,” Phys. Fluid , Vol. 14, No.2, pp. 612-621.
Hvorslev, M. J., 1936, “A Ring Shearing Apparatus for the Determination
of the Shearing Resistance and Plastic Flow of Soil,” In Proc. Intl
Conf. Soil Mech. Found. Engng, Cambridge, Mass., Vol. 2, pp. 125-
129.
Hvorslev, M. J., 1939, “Torsion Shear Tests and Their Place in the
Determination of Shearing Resistance of Soils,” Proc. ASTM, Vol. 39,
pp. 999-1022.
Jenkins, J. T. and Savage, S. B., 1983, “A Theory for the Rapid Flow of
Identical, Smooth, Nearly Elastic, Particles,” J. Fluid Mech., Vol. 130,
pp. 187-202.
Jenkins, J. T. and Zhang Chao, 2002, “Kinetic Theory for Identical, Frictional, Nearly Elastic Spheres,” Phys. Rev. E., Vol. 14, No.3, pp. 1228-1235.
Louge, M. Y., 2003, “Model for Dense Granular Flows Down Bumpy Inclines,” Phys. Rev. E., Vol. 67 061303, pp. 1-11.
Lun, C. K. K., Savage, S. B., 1986, “The Effects of an Impact Dependent Coefficient of Restitution on Stress Developed by Sheared Granular Materials,” Acta. Mech. Vol. 63, pp. 15-44.
Lun, C. K. K., Savage, S. B., 1987, “A Simple Kinetic Theory for Granular Flow of Rough, Inelastic, Spherical Particles,” Trans. ASME J. Appl. Mech. Vol. 54, pp. 47-53.
Lun, C. K. K., Savage, S. B., Jeffrey, D. J. and Chepurniy, N., 1984, “Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield,” J. Fluid
Mech. Vol. 140, pp. 223-256.
Lun, C. K. K., 1991, “Kinetic Theory for Granular Flow of Dense, Slightly Inelastic, Slightly Rough Spheres, ” J. Fluid Mech.,Vol. 258, pp. 335-353.
Lun, C. K. K. and Bent, A. A.,1994, “Numerical Simulation of Inelastic Frictional Spheres in Simple Shear Flow,” J. Fluid Mech.,Vol. 233., pp. 539-559.
Lun, C. K. K., 1996, “Granular Dynamics of Inelastic in Couette Flow” Phys. Fluids., Vol. 8, pp. 2868-2883.
Mandl, G., De Jong. L. N. J. and Maltha, A., 1977, “Shear Zones in
Granular Material,” Rock Mech., Vol. 9, pp. 95-144.
Miller, B., O’Hern, C. and Behringer, R. P., 1996, “Stress Fluctuations for
Continuously Sheared Granular Materials,” Phys. Rev. Lett., Vol. 77,
pp. 3110-3113.
Novosad, J., 1964, “Apparatus for Measuring the Dynamic Angles of
Internal Friction and External Friction of a Granular Material,”
Collection Czech. Chem. Commun., Vol. 29, pp. 2697-2701.
Reynolds, Osborne, 1885, “On the Dilatancy of Media Composed of
Rigid Particles in Contact,” Phil. Mag., Vol. 20.
Reynolds, Osborne, 1887, “Experiments Showing Dilutency, A Property
of Granular Materials Possibly Connected with Gravitation,” Proc.
Roy. Inst. Great Brit., Vol. 11, pp. 354.
Sasvári, M., Kertész, J. and Wolf, D.E., 2002, “Instability of Symmetric Couette Flow in a Granular Gas: Hydrodynamic Field Profiles and Transport,” Phys. Rev. E., Vol. 62, No.3, pp. 3817-3825.
Savage, S. B., 1992, “Disorder, Diffusion and Structure Formation in
Granular Flows,” in Disorder and Granular Media, D. Bideau, ed.,
Elsevier Science Publishers, Amsterdam, pp. 225-285.
Savage, S. B. and Dai, R., 1993, “Studies of Shear Flows. Wall slip
Velocity, ‘Layering’ and Self-Diffusion,” Mechanics of Materials, Vol.
16, pp. 225-238, Elsevier.
Savage, S. B. and Jeffrey, D. J., 1981, “The Stress Tensor in a Granular
Flow at High Shear Rates,” J. Fluid Mech., Vol. 110, pp. 255-272.
Savage, S. B. and Mckeown, S., 1983, “Shear Stress Developed during
Rapid Shear of Dense Concentrations of Large Spherical Particles
between Concentric Cylinders,” J. Fluid Mech., Vol. 127, pp. 453-
472.
Savage S. B. and Sayed, M., 1984, “Stresses Developed by Dry
Cohesionless Granular Materials Sheared in an Annular Shear Cell,” J.
Fluid Mech., Vol. 142, pp. 391-430.
Scarlett, B. and Todd, A. C., 1968, “A Split Ring Annular Shear Cell for
Determination of the Shear Strength of a Powder,” Sci. Instr., Vol. 1,
pp. 655-656.
Scarlett, B. and Todd, A. C., 1969, “The Critical Porosity of Free Flowing
Solids,” Trans. ASME B: J. Engng Ind., Vol. 91, pp. 478-488.
Scott, A. M. and Bridgewater, J., 1976, “Self-Diffusion of Spherical
Particles in a Simple Shear Apparatus,” Powder Tech., Vol. 14, pp.
177-183.
Smid, J., 1980 Pressure Gage for Measurements of Normal and Tangential Stresses in Granular Materials. CZ Patent 213 844, 1980.
Smid, J., 1982 Stress and Friction Forces in the Base of a Heap of Bulk Solids, Proc. of Internat. Symp. on Powder Technol. ’81, (K. Iinoya, Ed.), The Society of Powder Technology, Kyoto, Japan, pp. 177-183.
Sondergaard, R., Chaney, K. and Brennen, C. E., 1989, “Measurements of Solid Spheres Bounching off Plates,” Trans. ASME J. Appl. Mech.
Stephens, D. J. and Bridgwater, J., 1978a, “The Mixing and Segregation
of Cohesionless Particulate Materials. Part I. Failure Zone Formation,”
Powder Tech., Vol. 21, pp. 17-28.
Stephens, D. J. and Bridgwater, J., 1978b, “The Mixing and Segregation
of Cohesionless Particulate Materials. Part II. Microscopic
Mechanisms for Particles Differing in Size,” Powder Tech., Vol. 21, pp.
29-44.
Wang, D. G. and Campbell, C. S., 1992, “Reynolds Analogy for a
Shearing Granular Msterials,” J. Fluid Mech., Vol. 244, pp. 527-546.
Wolf, D. E., Kertész, J. and Sasvári, M., 2000, “Instability of Symmetric Couette Flow in a Granular Gas: Hydrodynamic Field Profiles and Transport,” Phys. Rev. E, Pre. 62. pp. 3817-3825.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top