跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 06:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳威宇
研究生(外文):Wai-Yu Chen
論文名稱:光電化學蝕刻製作n-型(100)矽質微米巨孔陣列及連續壁結構
指導教授:林景崎
指導教授(外文):J. C. Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:129
中文關鍵詞:氟化銨巨孔陣列及連續壁光電化學蝕刻陽極極化曲線
外文關鍵詞:Photo-electrochemical etchingDc-potentio dynamicpolarizationMacro-pores and wall arrayAmmonium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以光電化學方法,在n 型(100)矽單晶上蝕刻獲得寬且深的微米級巨孔陣列及連續壁結構。研究方法利用陽極動態極化法及定電位蝕刻,在氟化物溶液中,探討預蝕刻形貌、蝕刻液濃度、添加劑、蝕刻液種類等參數對n 型(100)矽單晶的陽極極化曲線,以及蝕刻形貌的影響,進而挑選出最佳蝕刻參數,再利用定電流法製作出所需之結構。
研究結果顯示,縮短預蝕刻時間為一半,可獲得平底的預蝕刻結構,藉此加強孔洞側向的蝕刻,得到寬50μm 的蝕刻孔徑。n-型(100)矽單晶在室溫下照光150W,蝕刻孔洞深度隨氫氟酸濃度從1M 增加到6M 而減少,1M 氫氟酸有最大的蝕刻孔洞深度。試片在2M 氫氟酸中添加5M 及10M 酒精濃度,可增加蝕刻孔洞深度,但添加濃高到15.8M時容易形成電解拋光,使蝕刻效果下降。氟化銨中添加酒精的效果與氫氟酸相反,2M 氟化銨中添加越多的酒精,蝕刻效果越差。
以1M 氫氟酸,定電流0.135mA/cm2 蝕刻24 小時,可得到寬50μm,深近100μm,壁厚10μm 的連續壁結構;以2M 氫氟酸,定電流0.135mA/cm2蝕刻24 小時,可得到寬50μm,深近90μm,孔洞間距10μm 的微米巨孔陣列結構。
Formation of macro-pores and wall array on n-type silicon (100) by
photo-electrochemical etching has been investigated in this work. Using
dc-potentiodynamic polarization and potentiostatic etching to analyze the
anode polarization curves and etching morphologies of n-type silicon
(100) which were effect by pre-etching morphology, etching electrolyte
concentration, additive and etching electrolyte type. Choosing the best
etching parameters in the experiments and using galvanostatic etching to
fabrication the designate structures.
Results show that: decrease the pre-etching time to one half will obtain
a flat bottom pre-etching morphologies that increase the side etching of
pores and reach the 50µm pore diameters. n-type silicon (100) under
room temperature and 150W illumination, the depths of etching pores
decrease when HF concentration increase from 1M to 6M. 1M HF has the
deepest pores. Add ethanol in 2M HF will increase the etching depths.
But add 15.8M ethanol (which does not content any water) will decrease
the etching depths. On the contrary, add ethanol in 2M NH4F will
decrease the etching depths.
Galvanostatic etching with 24 hours can obtain the macro-pores and
wall array with 50µm widths, 100µm depths, and 10µm wall thickness.
中文摘要Ⅰ
英文摘要Ⅱ
誌謝Ⅲ
目錄Ⅳ
表目錄Ⅷ
圖目錄XI
壹、簡介1
一、研究背景1
1-1 多孔矽及其應用1
1-2 多孔矽的製作技術2
1-2-1 濕式蝕刻2
1-2-2 乾式蝕刻2
1-2-3 電化學蝕刻3
二、研究目的4
貳、原理及文獻回顧5
一、半導體電化學理論5
2-1 半導體電子能階5
V
2-2 電解液的電子能階------絕對電極電位5
2-3 半導體╱電解液界面6
2-3-1 平衡狀態7
2-3-2 平帶電位(flat-band voltage) 8
2-3-3 半導體電極的光效應(photo-effects at
semiconductor electrodes)
9
二、多孔矽形成機制10
2-4 矽在電解液中的電流—電壓(I-V)特性10
2-5 矽的陽極溶解反應11
2-6 多孔矽的形成模型12
2-6-1 Beale 模型12
2-6-2 擴散機制模型13
2-6-3 Rate 模型14
2-6-4 量子模型14
2-7 光電化學蝕刻製作多孔矽15
參、實驗方法18
3-1 試片選擇18
3-2 試片前處理18
3-3 電解蝕刻設備20
VI
3-4 蝕刻液選擇20
3-5 電化學方法21
3-6 蝕刻表面觀察22
肆、結果23
4-1 氫氟酸濃度影響矽單晶陽極電化學行為23
4-1-1 開路電位(OCP)量測23
4-1-2 陽極動態極化行為24
4-1-3 定電位蝕刻形態25
4-2 氫氟酸中酒精添加濃度影響矽單晶陽極電化學行為27
4-2-1 開路電位量測27
4-2-2 陽極動態極化行為27
4-2-3 定電位蝕刻形態28
4-3 氟化銨中酒精添加濃度影響矽單晶陽極電化學行為30
4-3-1 開路電位量測30
4-3-2 陽極動態極化行為31
4-3-3 定電位蝕刻形態31
4-4 微米巨孔陣列及連續壁結構製作32
伍、討論35
5-1 預蝕刻圖案之影響35
VII
5-1-1 預蝕刻深度35
5-1-2 預蝕刻圖樣36
5-2 蝕刻液濃度變化影響Jps及Eps 38
5-3 蝕刻液濃度變化影響蝕刻行為41
5-4 氫氟酸與氟化銨之比較42
陸、結論45
柒、未來展望47
捌、參考文獻48
[Angelucci 1] A. R. Angelucci, A. Poggi, L. Dori, A. Tagliani, G. C.
Cardinari, F. Corticelli, and M. Marisaldi, “Permeated
Porous Silicon Suspended Membrane as Sub-ppm
Benzene Sensor for Air Quality Monitoring“, J. Porous
Mater., 7, 197, (2000).
[Angelucci 2] R. Angelucci, A. Poggi, L. Dori, G. C. Cadinali, A.
Parisini, A. Tagliani, M. Mariasaldi, and F. Cavani,
“Permeated porous silicon for hydrocarbon sensor
fabrication“, Sens. Actuators A, 74, 1, (1999).
[Ashruf] C. M. A. Ashruf, P. J. French, P. M. Sarro, R.
Kazinczi, X. H. Xia, and J. J. Kelly, “Galvanic etching
for sensor fabrication“, J. Micromech. Microeng., 10,
505, (2000).
[Barillaro] G. Barillaro, A. Nannini, M. Piotto, “Electrochemical
etching in HF solution for silicon micromaching“,
sensors and actuators, A 102 (2002).
[Beale 1] M.I.J. Beale, N.G. Chew, M.J, Uren, A.G. Cullis, J.D.
Benjamin, “Microstructure and formation mechanism
of porous silicon“, Appl. Phys. Lett., 46, 86, (1985).
[Beale 2] M.I.J. Beale, J.D. Benjamin, M.J, Uren, N.G. Chew,
A.G. Cullis, “An experimental and theoretical study of
the formation and microstructure of porous silicon“, J.
Cryst. Growth. 73, 622 (1985).
49
[Behern] J. von Behren, L. Trubeskov, and P. M. Fauchet,
“Preparation and characterization of ultrathin porous
silicon films“, Appl. Phys. Lett., 66, 1662, (1995).
[Bell] T. E. Bell, P.T.J. Gennissen, D. DeMunter, M. Kuhl,
“Porous silicon as a sacrificial material“, J.
Micromech. Microeng., 6, 361, (1996).
[Chao] K. J. Chao, S. C. Kao, C. M. Yang, M. S. Hseu, and T.
G. Tsai, “Formation of High Aspect Ratio Macropore
Array on p-Type Silicon“, Electrochem. Solid-State
Lett., 3, 489, (2000).
[Chelnokov] A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and
J. -M. Lourtioz, “Near-infrared Yablonovite-like
photonic crystals by focused-ion-beam etching of
macroporous silicon“, Appl. Phys. Lett., 77, 2943,
(2000).
[Fauthauer] R.W. Fauthauer, T. George, A. Ksendzov, and R.P.
Vasquez, “Visible luminescence from silicon waters
subjected to stain etches“, Appl. Phys. Lett., 60, 995
(1992).
[Gerischer] Gerischer, Heinz/Tobias, Charles W. “Advances in
electrochemical science and engineering.v.4“,
Weinheim,VCH Publishers, 1995
[Gomes] W. P. Gomes, F. Cardon, Prog. Surf. Sci, 12:155,
(1982).
[Grouing] U. Gruning, V. Lehmann, S. Ottow, and K. Busch,
50
“Macroporous silicon with a complete
two-dimensional photonic band gap centered at 5 µm“,
Appl. Phys. Lett., 68, 747, (1996).
[Halimaoui] A. Halimaoui, “Porous Silicon Science and
Technology“, edited by J. C. Vial and J. Derrien
(Springer-Verlag, Berlin), p33, (1995).
[Kern] W. Kern, D. Puotinen, “Cleaning solution based on
hydrogen peroxide for use in silicon semiconductor
technology“, RCA Rev., 31, 187, (1970).
[Kleimann] P. Kleimann, J. Linnros, S. Petersson, “Formation of
wide and deep pores in silicon by electrochemical
etching“, Mat. Sci. Eng. B69-70, 29-30(2000).
[Koukou] M. K. Koukou, N. Papayannakos, N. C. Markatos, M.
Bracht, N. M. Van Veen, and A. Roskam,
“Performance of ceramic membranes at elevated
pressure and temperature effect of non-ideal flow
conditions in a pilot scale membrane separator“, J.
Membr. Sci., 155, 241, (1999).
[Lang] Walter Lang, “Silicon microstructuring technology“,
Mater. Sci. Eng., R17, 1-55, (1996).
[Laurell] T. Laurell, L. Wallman, and J. Nilsson, “Design and
development of a silicon microfabricated flow-through
dispenser for on-line picolitre sample handling“, J.
Micromech. Microeng., 9, 369, (1999).
[Lehmann 1] V. Lehmann, H. Foll, “Formation mechanism and
51
properties of electrochemically etched trenches in
n-type silicon“, J. Electrochem. Soc., 137, 653, (1990).
[Lehmann 2] V. Lehmann, W. Honlein, R. Reisinger, A. Spitzer, H.
Wendt, and J. Willer, “A novel capacitor technology
based on porous silicon“, Thin Solid Films, 276, 138,
(1996).
[Lehmann 3] V. Lehmann, U. Gosele, “Porous silicon formation: A
quantum wire effect“, Appl. Phys. Lett., 58, 865,
(1991).
[Lehmann 4] V. Lehmann, “Porous silicon-a new material for
MEMS“, Micro Electro Mechanical Systems, 11-15
Feb, 1-6 (1996).
[Lehmann 5] V. Lehmann, J. Electrochem. Soc., 140, 2836, (1993).
[Miller] F. Miller, A. Birner, U. Gosele, V. Lehmann, S. Ottow,
and H. Foll, “Structuring of Macroporous Silicon for
Applications as Photonic Crystals“, J. Porous Mater.,
7, 201, (2000).
[Mizishima] I. Mizishima, T. Sato, S. Taniguchi, and Y.
Tsunashima, “Empty-space-in-silicon technique for
fabricating a silicon-on-nothing structure“, Appl. Phys.
Lett., 77, 3290, (2000).
[Ohji 1] H. Ohji, P. T. J. Gennissen, P. J. French, and K.
Tsutsumi, “Fabrication of a beam-mass structure using
single-step electrochemical etching for micro structures
(SEEMS) “, J. Micromech. Microeng., 10, 440, (2000).
52
[Ohji 2] H. Ohji, P.J. Trimp, P.J. French, “Fabrication of free
standing structure using single step electrochemical
etching in hydrofluoric acid“, Sens. Actuators A, 73,
95, (1999).
[Ohji 3] H. Ohij, P.J. French, K. Tsutsumi, “Fabrication of
mechanical structure in p-type silicon using
electrochemical etching“, Sens. Actuators A, 82, 254,
(2000).
[Parkhutik] V. P. Parkhutik, J. M. Albella, J. M. Martinez-Duart, J.
M. Gomez-rodriguez, A. M. Baro, V. I.
Shershulsky,“Different types of pore sstructure in
porous silicon“, Appl. Phys. Lett., 62, 366, (1993).
[Read] A. J. Read, R. J. Need, K. J. Naish, L. T. Canham, P. D.
J. Calcott, A. Qteish, “First-principles calculations of
the electronic properties of silicon quantum wires“,
Phys. Rev. Lett., 69, 1232, (1992).
[Rossi] A. M. Rossi, G. Amato, L. Boarino, and C. Novero,
“Realisation of membranes for atomic beam collimator
by macropore micromachining technique (MMT) “,
Mater. Sci. Eng., B69-70, 66, (2000).
[Rowson 1] S. Rowson, A. Chelnokov, J. M. Lourtioz,
“Macroporous silicon photonic crystals at 1.55 µm“,
Electron. Lett., 35, 753, (1999).
[Rowson 2] S. Rowson, A. Chelnokov, J. M. Lourtioz, “
Two-Dimensional Photonic Crystals in Macroporous
53
Silicon: From Mid-Infrared (10 m) to
Telecommunication Wavelengths (1.3-1.5 m) “, J.
Lightwave Technol., 17, 1989, (1999).
[Sanders] G. D. Sanders and Y. C. Chang, ”Theory of optical
properties of quantum wires in porous silicon”, Phys.
Rev. B, 45, 9202, (1992).
[Shih] S. Shih, K.H. Jung, T.Y. Hsieh, J. Sarathy, J.C.
Campbell, and D.L. Kwong, “Photoluminescence and
formation mechanism of chemically etched silicon“,
Appl.Phys. Lett., 60, 1863 (1992).
[Smith 1] R.L. Smith, S.D. Collins, “Porous silicon formation
mechanism“, J. Appl. Phys. 71, R1(1992).
[Smith 2] R.L. Smith, S.F. Chuang, S.D. Collins, “A theoretical
model of the formation morphologies of porous
silicon“, J. Electro. Mater. 17, 533, (1988).
[Steiner] P. Steiner, A. Richter, W. Lang, “Using porous silicon
as a sacrificial layer“, J. Micromech. Microeng., 3, 32,
(1993).
[Tomkiewicz] M. Tomkiewicz, J Electrochem. Soc, 126:2220, (1979).
[Traasatti] S. Traasatti, “The absolute electrode potential: an
explanatory note“, IUPAC Commission I. 3,
electrochemistry, (1984)
[Turner] D. R Turner, “Electropolishing silicon in hydrofluoric
acid solutions“, J. Electrochem. Soc., 105, 653, (1958).
[Uhlir] A. Uhlir, Bell Syst. Techn. J., 35, 333, (1956).
[Vazsonyi] E. Vazsonyi, E. Szilagyi, P. Petrik, Z.E. Horvath, T.
Lohner, M. Fried, G. Jalsovszky, “Porous silicon
formation by stain etching“, Thin Solid Films, 388,
295, (2001).
[Walker] J. A. Walker, “The future of MEMS in
telecommunications networks“, J. Micromech.
Microeng., 10, R1, (2000).
[Wu] 吳浩青, 李永舫編著, “電化學動力學“, 科技圖
書股份有限公司, p178-185, (2001).
[Xiao] Hong Xiao, “Introduction to semiconductor
manufacturing technology“, Pearson Education, p92,
(2000).
[Zhang] X. G. Zhang, S. D. Collins, R. L. Smith, “Porous
silicon formation and electropolishing of silicon by
anodic polarization in HF solution“, J. Electrochem.
Soc., 136, 1561, (1989).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top